Twitter Storm如何保证消息不丢失(3)

tuple ack示例

tuple ack示例

关于storm怎么跟踪tuple还有一些细节, 前面已经提到过了, 你可以自己设定你的topology里面有多少个acker。而这又给我们带来一个问题, 当一个tuple需要ack的时候,它到底选择哪个acker来发送这个信息呢?

storm使用一致性哈希来把一个spout-tuple-id对应到acker, 因为每一个tuple知道它所有的祖宗的tuple-id, 所以它自然可以算出要通知哪个acker来ack。(这里所有的祖宗是指这个tuple所对应的所有的根tuple。这里注意因为一个tuple可能存在于多个tuple树,所以才有所有一说)。

storm的另一个细节是acker是怎么知道每一个spout tuple应该交给哪个task来处理。当一个spout发射一个新的tuple, 它会简单的发一个消息给一个合适的acker,并且告诉acker它自己的id(taskid), 这样storm就有了taskid-tupleid的对应关系。 当acker发现一个树完成处理了, 它知道给哪个task发送成功的消息。

acker task并不显式的跟踪tuple树。对于那些有成千上万个节点的tuple树,把这么多的tuple信息都跟踪起来会耗费太多的内存。相反, acker用了一种不同的方式, 使得对于每个spout tuple所需要的内存量是恒定的(20 bytes) . 这个跟踪算法是storm如何工作的关键,并且也是它的主要突破。

一个acker task存储了一个spout-tuple-id到一对值的一个mapping。这个对子的第一个值是创建这个tuple的taskid, 这个是用来在完成处理tuple的时候发送消息用的。 第二个值是一个64位的数字称作:”ack val”, ack val是整个tuple树的状态的一个表示,不管这棵树多大。它只是简单地把这棵树上的所有创建的tupleid/ack的tupleid一起异或(XOR)。

当一个acker task 发现一个 ack val变成0了, 它知道这棵树已经处理完成了。 因为tupleid是随机的64位数字, 所以, ack val碰巧变成0(而不是因为所有创建的tuple都完成了)的几率极小。算一下就知道了, 就算每秒发生10000个ack, 那么需要50000000万年才可能碰到一个错误。而且就算碰到了一个错误, 也只有在这个tuple失败的时候才会造成数据丢失。 关于Acker的详细工作流程的分析可以看看这篇文章: Twitter Storm源代码分析之acker��作流程

既然你已经理解了storm的可靠性算法, 让我们一起过一遍所有可能的失败场景,并看看storm在每种情况下是怎么避免数据丢失的。

1. 由于对应的task挂掉了,一个tuple没有被ack: storm的超时机制在超时之后会把这个tuple标记为失败,从而可以重新处理。

2. Acker挂掉了: 这种情况下由这个acker所跟踪的所有spout tuple都会超时,也就会被重新处理。

3. Spout挂掉了: 在这种情况下给spout发送消息的消息源负责重新发送这些消息。比如Kestrel和RabbitMQ在一个客户端断开之后会把所有”处理中“的消息放回队列。

就像你看到的那样, storm的可靠性机制是完全分布式的, 可伸缩的并且是高度容错的。

调整可靠性 (Tuning Reliability)

acker task是非常轻量级的, 所以一个topology里面不需要很多acker。你可以通过Strom UI(id: -1)来跟踪它的性能。 如果它的吞吐量看起来不正常,那么你就需要多加点acker了。

如果可靠性对你来说不是那么重要 — 你不太在意在一些失败的情况下损失一些数据, 那么你可以通过不跟踪这些tuple树来获取更好的性能。不去跟踪消息的话会使得系统里面的消息数量减少一半, 因为对于每一个tuple都要发送一个ack消息。并且它需要更少的id来保存下游的tuple, 减少带宽占用。

有三种方法可以去掉可靠性。第一是把Config.TOPOLOGY_ACKERS 设置成 0. 在这种情况下, storm会在spout发射一个tuple之后马上调用spout的ack方法。也就是说这个tuple树不会被跟踪。

第二个方法是在tuple层面去掉可靠性。 你可以在发射tuple的时候不指定messageid来达到不跟粽某个特定的spout tuple的目的。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/2524a197230067c15969e05665c20b7d.html