UNIX/Linux 平台可执行文件格式分析(8)

  对一个ELF可执行程序而言,一个基本的段是标记p_type为PT_INTERP的段,它表明了运行此程序所需要的程序解释器(/lib/ld- linux.so.2),实际上也就是动态连接器(dynamic linker)。最重要的段是标记p_type为PT_LOAD的段,它表明了为运行程序而需要加载到内存的数据。查看上面实际输入,可以看见有两个可 LOAD段,第一个为只读可执行(FLg为R E),第二个为可读可写(Flg为RW)。段1包含了文本节.text,注意到ELF文件头部中程序进入点的值为0x80483cc,正好是指向节. text在内存中的地址。段二包含了数据节.data,此数据节中数据是可读可写的,相对的只读数据节.rodata包含在段1中。ELF格式可以比 COFF格式包含更多的调试信息,如上面所列出的形式为.debug_xxx的节。在I386平台LINUX系统下,用命令file查看一个ELF可执行程序的可能输出是:a.out: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5, dynamically linked (uses shared libs), not stripped。

  ELF文件中包含了动态连接器的全路径,内核定位"正确"的动态连接器在内存中的地址是"正确"运行可执行文件的保证,参考资料 13讨论了如何通过查找动态连接器在内存中的地址以达到颠覆(Subversiver)动态连接机制的方法。

  最后我们讨论ELF文件的动态连接机制。每一个外部定义的符号在全局偏移表(Global Offset Table GOT)中有相应的条目,如果符号是函数则在过程连接表(Procedure Linkage Table PLT)中也有相应的条目,且一个PLT条目对应一个GOT条目。对外部定义函数解析可能是整个ELF文件规范中最复杂的,下面是函数符号解析过程的一个描述。

  1:代码中调用外部函数func,语句形式为call 0xaabbccdd,地址0xaabbccdd实际上就是符号func在PLT表中对应的条目地址(假设地址为标号.PLT2)。

  2:PLT表的形式如下

  .PLT0: pushl 4(%ebx) /* GOT表的地址保存在寄存器ebx中 */

  jmp *8(%ebx)

  nop; nop

  nop; nop

  .PLT1: jmp *name1@GOT(%ebx)

  pushl $offset

  jmp .PLT0@PC

  .PLT2: jmp *func@GOT(%ebx)

  pushl $offset

  jmp .PLT0@PC

  3:查看标号.PLT2的语句,实际上是跳转到符号func在GOT表中对应的条目。

  4:在符号没有重定位前,GOT表中此符号对应的地址为标号.PLT2的下一条语句,即是pushl $offset,其中$offset是符号func的重定位偏移量。注意到这是一个二次跳转。

  5:在符号func的重定位偏移量压栈后,控制跳到PLT表的第一条目,把GOT[1]的内容压栈,并跳转到GOT[2]对应的地址。

  6:GOT[2]对应的实际上是动态符号解析函数的代码,在对符号func的地址解析后,会把func在内存中的地址设置到GOT表中此符号对应的条目中。

  7:当第二次调用此符号时,GOT表中对应的条目已经包含了此符号的地址,就可直接调用而不需要利用PLT表进行跳转。

  动态连接是比较复杂的,但为了获得灵活性的代价通常就是复杂性。其最终目的是把GOT表中条目的值修改为符号的真实地址,这也可解释节.got包含在可读可写段中。

  动态连接是一个非常重要的进步,这意味着库文件可以被升级、移动到其他目录等等而不需要重新编译程序(当然,这不意味库可以任意修改,如函数入参的个数、数据类型应保持兼容性)。从很大程度上说,动态连接机制是ELF格式代替a.out格式的决定性原因。如果说面对对象的编程本质是面对接口(interface)的编程,那么动态连接机制则是这种思想的地一个非常典型的应用,具体的讲,动态连接机制与设计模式中的桥接(BRIDGE)方法比较类似,而它的LAZY特性则与代理(PROXY)方法非常相似。动态连接操作的细节描述请参阅参考资料 8,9,10,11。通过阅读命令readelf、objdump 的源代码以及参考资料 14中所提及的相关软件源代码,可以对ELF文件的格式有更彻底的了解。

  总结

  不同时期的可执行文件格式深刻的反映了技术进步的过程,技术进步通常是针对解决存在的问题和适应新的环境。早期的UNIX系统使用a.out格式,随着操作系统和硬件系统的进步,a.out格式的局限性越来越明显。新的可执行文件格式COFF在UNIX System VR3中出现,COFF格式相对a.out格式最大变化是多了一个节头表(section head table),能够在包含基础的文本段、数据段、BSS段之外包含更多的段,但是COFF对动态连接和C++程序的支持仍然比较困难。为了解决上述问题, UNIX系统实验室(UNIX SYSTEM Laboratories USL) 开发出ELF文件格式,它被作为应用程序二进制接口(Application binary Interface ABI)的一部分,其目的是替代传统的a.out格式。例如,ELF文件格式中引入初始化段.init和结束段.fini(分别对应构造函数和析构函数)则主要是为了支持C++程序。1994年6月ELF格式出现在LINUX系统上,现在ELF格式作为UNIX/LINUX最主要的可执行文件格式。当然我们完全有理由相信,在将来还会有新的可执行文件格式出现。

  上述三种可执行文件格式都很好的体现了设计思想中分层的概念,由一个总的头部刻画了文件的基本要素,再由若干子头部/条目刻画了文件的若干细节。比较一下可执行文件格式和以太数据包中以太头、IP头、TCP头的设计,我想我们能很好的感受分层这一重要的设计思想。参考资料 21从全局的角度讨论了各种文件的格式,并提出一个比较夸张的结论:Everything Is Byte!

  最后的题外话:大多数资料中对a.out格式的评价较低,常见的词语有黑暗年代(dark ages)、丑陋(ugly)等等,当然,从现代的观点来看,的确是比较简单,但是如果没有曾经的简单何来今天的精巧?正如我们今天可以评价石器时代的技术是ugly,那么将来的人们也可以嘲讽今天的技术是非常ugly。我想我们也许应该用更平和的心态来对曾经的技术有一个公正的评价。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/28562.html