// 如果已经存在key对应的节点,则覆盖value值
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
// 重写,putVal的第三个参数onlyIfAbsent=true,如果已经存在key对应的节点,不覆盖value值
@Override
public V putIfAbsent(K key, V value) {
return putVal(hash(key), key, value, true, true);
}
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0) // 如果map为空时,调用resize()进行初始化!
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null) // 如果没有在数组中找到对应的节点,则直接插入一个Node (未发生碰撞)
tab[i] = newNode(hash, key, value, null);
else { // 找到了(n - 1) & hash 对应下标的数组(tab)中的节点 ,也就是发生了碰撞
Node<K,V> e; K k;
// 1. hash值一样,key值一样,则找到目标Node
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
// 2. 数组中找到的这个节点p是TreeNode类型,则需要插入到RBT里面一个节点
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 3. 不是TreeNode类型,则表示是一个链表,这里就类似与jdk1.7中的操作
for (int binCount = 0; ; ++binCount) { // 遍历链表
if ((e = p.next) == null) {
// 4. 此时查找当前链表的次数已经超过7个,则需要链表RBT化!
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) // 5. 找到链表中对应的节点
break;
p = e;
}
}
// 如果e不为空,则表示在HashMap中找到了对应的节点
if (e != null) { // existing mapping for key
V oldValue = e.value;
// 当onlyIfAbsent=false 或者key对应的旧value为空时,用新的value替换旧value
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount; // 操作次数+1
if (++size > threshold) // hashmap节点个数+1,并判断是否超过阈值,如果超过则重建结构!
resize();
afterNodeInsertion(evict);
return null;
}
下面主要关注是三个函数:
putTreeVal(this, tab, hash, key, value);
treeifyBin(tab, hash);