* 如果这个元素小于基准,那么smallEnd增加1,这时smallEnd位置的元素是等于基准元素的(或者此时smallEnd与i相等),交换smallEnd与i处的元素就可以了。
* 如果这个元素大于基准,相对比较复杂一点。此时让bigBegin减小1,检查大数分区前面一个元素是不是大于基准,如果大于基准,重复此步骤,不断让bigBegin减小1,直到找到不比基准大的元素(如果这个过程中,发现bigBegin与i相等,则中止遍历,说明分区结束)。找到这个不比基准大小元素时需要区分是不是比基准小。如果比基准小,需要做两步交换,先将i位置的大数和bigBegin位置的小数交换,这时跟第一种case同时,smallEnd增加1,并且将i位置的小数和smallEnd位置的元素交换。如果和基准相等,则只需要将i位置的大数和bigBegin位置的小数交换。
* 如果这个元素与基准相等,什么也不用做。
小数组优化
对于小数组(小于16项或10项。v8认为10项以下的是小数组。),可能使用快速排序的速度还不如平均复杂度更高的选择排序。所以对于小数组,可以使用选择排序法要提高性能,减少递归深度。
function insertionSort(a, func, from, to) { for (var i = from + 1; i < to; i++) { var element = a[i]; for (var j = i - 1; j >= from; j--) { var tmp = a[j]; if (func(tmp, element) > 0) { a[j + 1] = tmp; } else { break; } } a[j + 1] = element; } }
v8引擎没有做的优化
由于快速排序的不稳定性(少数情况下性能差,前文已经详细描述过),David Musser于1997设计了内省排序法(Introsort)。这个算法在快速排序的基础上,监控递归的深度。一旦长度为n的数组经过了logn层递归(快速排序算法最佳情况下的递归层数)还没有结束的话,就认为这次快速排序的效率可能不理想,转而将剩余部分换用其他排序算法,通常使用堆排序算法(Heapsort,最差时间复杂度和最优时间复杂度均为nlogn)。
v8引擎额外做的优化
快速排序递归很深,如果递归太深的话,很可以出现“爆栈”,我们应该尽可能避免这种情况。上面提到的对小数组采用选择排序算法,以及采用内省排序算法都可以减少递归深度。不过v8引擎中,做了一些不太常见的优化,每次我们分区后,v8引擎会选择元素少的分区进行递归,而将元素多的分区直接通过循环处理,无疑这样的处理大大减小了递归深度。我大致把v8这种处理的过程写一下:
function quickSort(arr, from, to){ while(true){ // 排序分区过程省略 // ... if (to - bigBegin < smallEnd - from) { quickSort(a, bigBegin, to); to = smallEnd; } else { quickSort(a, from, smallEnd); from = bigBegin; } } }
内容版权声明:除非注明,否则皆为本站原创文章。
转载注明出处:http://www.heiqu.com/81.html