如果把原图看成一个前端组件,即一个购物按钮组,里面每个按钮的背景可以自定义,按钮里面由文字、分隔线、文字三种元素组成,那么上面翻转后的图片是可以看成同一个组件的,即可以拿来作为训练集。
有时候,翻转带来的效果并不是自己想要的,可能翻转后,和原来的图片就不应该视作同一个东西了,这时候这种方法就有局限性了。
调整亮度
相比之后,调整亮度就显得更加普适了,无论是什么图片,调整亮度后,里面的东西依然还是原来的那个东西。
调整亮度用到了 gm 的 .modulate 方法:
/** * 调整亮度 * @param inputPath 输入的图像文件路径 * @param outputPath 输出的图像文件路径 * @param brightness 图像亮度的值,基准值是 100,比 100 高则是增加亮度,比 100 低则是减少亮度 * @param callback 处理后的回调函数 */ function adjustBrightness(inputPath, outputPath, brightness, callback) { gm(inputPath) .modulate(brightness, 100, 100) .write(outputPath, callback); }
.modulate 方法是一个多功能的方法,可以同时调整图片的亮度、饱和度和色相三种特性,这三种特性分别对应着该方法的三个参数,这里只调整亮度,所以只改变第一个参数(比 100 高则是增加亮度,比 100 低则是减少亮度),其他保持 100 基准值不变。
我把亮度从 0 - 200 的图片都生成了出来,并进行了对比,选出了一个亮度处理较为合适的区间。可以看看 0 - 200 之间相邻亮度相差为 10 的图片之间的差别(提示:每张图片的左上角标识出了该图片的亮度):
可以看到亮度为 60 以下的图片,都太暗了,细节不够明显,亮度为 150 以上的图片,都太亮了,也是细节不够明显。而经过多张图片综合对比之后,我认为 [60, 140] 这个区间的图片质量比较好,与原图相比不会丢失太多细节。
再来看看亮度为 50 和 60 的两张图片,其实看起来像是一张图片一样,不符合训练集多样性的原则,更何况是相邻亮度相差为 1 的两张图片。所以最终决定作为训练集的相邻两张图片亮度差为 20,这样差异就比较明显,比如亮度为 80 和亮度为 100 的两张图片。
最终,调节亮度产生的新图片将会是 4 张。从亮度为 60 的图片开始,每增加 20 亮度就选出来加入训练集,直到亮度为 140 的图片,其中亮度为 100 的图片不算。
调节饱和度
调节饱和度也是用 .modulate 方法,只不过是调节第二个参数:
/** * 调整饱和度 * @param inputPath 输入的图像文件路径 * @param outputPath 输出的图像文件路径 * @param saturation 图像饱和度的值,基准值是 100,比 100 高则是增加饱和度,比 100 低则是减少饱和度 * @param callback 处理后的回调函数 */ function adjustSaturation(inputPath, outputPath, saturation, callback) { gm(inputPath) .modulate(100, saturation, 100) .write(outputPath, callback); }
同样按调节亮度的方法来确定饱和度的范围以及训练集中相邻两张图片的饱和度相差多少。可以看看相邻饱和度相差为 10 的图片之间的差别(提示:每张图片的左上角标识出了该图片的饱和度):
调节饱和度的产生的图片细节没有丢,大多都能够用作训练集中的图片,与亮度一样,饱和度相差 20 的两张图片差异性明显。另外,饱和度大于 140 的时候,图片改变就不明显了。所以调节饱和度产生的新图片将会是 6 张。从饱和度为 0 的图片开始,每增加 20 饱和度就选出来加入训练集,直到饱和度为 140 的图片,其中饱和度为 100 的图片不算。
调节色相