理解监测指标,并使用 Python 去监测它们(2)

    resp_time =(time.time()- request.start_time)*1000

    with open('metrics.csv','a', newline='')as f:

        csvwriter = csv.writer(f)

        csvwriter.writerow([str(int(time.time())), str(resp_time)])

    return response

def setup_metrics(app):

    app.before_request(start_timer)

    app.after_request(stop_timer)

当在应用程序中调用 setup_metrics() 时,它配置在一个请求被处理之前调用 start_timer() 函数,然后在该请求处理之后、响应发送之前调用 stop_timer() 函数。在上面的函数中,我们写了时间戳并用它来计算处理请求所花费的时间。

当我们在 demo1 目录中运行 docker-compose up,它会启动这个 web 应用程序,然后在一个客户端容器中可以生成一些对 web 应用程序的请求。你将会看到创建了一个 src/metrics.csv 文件,它有两个字段:timestamp 和 request_latency。

通过查看这个文件,我们可以推断出两件事情:

生成了很多数据

没有观测到任何与指标相关的特征

没有观测到与指标相关的特征,我们就不能说这个指标与哪个 HTTP 端点有关联,或这个指标是由哪个应用程序的节点所生成的。因此,我们需要使用合适的元数据去限定每个观测指标。

《Statistics 101》

(LCTT 译注:这是一本统计学入门教材的名字)

假如我们回到高中数学,我们应该回忆起一些统计术语,虽然不太确定,但应该包括平均数、中位数、百分位和柱状图。我们来简要地回顾一下它们,不用去管它们的用法,就像是在上高中一样。

平均数

平均数mean,即一系列数字的平均值,是将数字汇总然后除以列表的个数。3、2 和 10 的平均数是 (3+2+10)/3 = 5。

中位数

中位数median是另一种类型的平均,但它的计算方式不同;它是列表从小到大排序(反之亦然)后取列表的中间数字。以我们上面的列表中(2、3、10),中位数是 3。计算并不是非常直观,它取决于列表中数字的个数。

百分位

百分位percentile是指那个百(千)分比数字低于我们给定的百分数的程度。在一些场景中,它是指这个测量值低于我们数据的百(千)分比数字的程度。比如,上面列表中 95% 是 9.29999。百分位的测量范围是 0 到 100(不包括)。0% 是一组数字的最小分数。你可能会想到它的中位数是 50%,它的结果是 3。

一些监测系统将百分位称为 upper_X,其中 X 就是百分位;upper 90 指的是在 90% 的位置的值。

分位数

“q-分位数”是将有 N 个数的集合等分为 qN 级。q 的取值范围为 0 到 1(全部都包括)。当 q 取值为 0.5 时,值就是中位数。(分位数quantile)和百分位数的关系是,分位数值 q 等于 100 百分位值。

柱状图

<ruby柱状图histogram这个指标,我们前面学习过,它是监测系统中一个实现细节。在统计学中,一个柱状图是一个将数据分组为 的图表。我们来考虑一个人为的不同示例:阅读你的博客的人的年龄。如果你有一些这样的数据,并想将它进行大致的分组,绘制成的柱状图将看起来像下面的这样:

Histogram graph

Histogram graph

累积柱状图

一个累积柱状图cumulative histogram也是一个柱状图,它的每个桶的数包含前一个桶的数,因此命名为累积。将上面的数据集做成累积柱状图后,看起来应该是这样的:

Cumulative histogram

Cumulative histogram

我们为什么需要做统计?

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/e009b7a14cfe9fc931f83ac09b3ba384.html