关于PHP的相似度计算函数:levenshtein的使用介绍(2)


<?PHP
    $s1 = "abcjfdkslfdd";
    $l1 = strlen($s1);
    $s2 = "aab84093840932bd";
    $l2 = strlen($s2);

    $dis = 0;
    for ($i = 0; $i <= $l2; $i++){
        $p1[$i] = $i;
    }

    for ($i = 0; $i < $l1; $i++){
        $p2[0] = $p1[0] + 1;

        for ($j = 0; $j < $l2; $j++){
            if ($s1[$i] == $s2[$j]){
                $dis = min($p1[$j], $p1[$j + 1] + 1, $p2[$j] + 1);
            }else{
                $dis = min($p1[$j] + 1, $p1[$j + 1] + 1, $p2[$j] + 1);  // 注意这里最后一个参数为$p2 
            }
            $p2[$j + 1] = $dis;
        }
        $tmp = $p1;
        $p1 = $p2;
        $p2 = $tmp; 
    }

    echo "n";
    echo $p1[$l2];
    echo "n";
    echo levenshtein($s1, $s2);


如上为PHP内核开发者对前面经典DP的优化,其优化点在于不停的复用两个一维数组,一个记录上次的结果,一个记录这一次的结果。如果按照PHP的参数,分别给三个操作赋值不同的值,在上面的算法中将对应的1变成操作对应的值就可以了。 min函数的第一个参数对应的是修改,第二个参数对应的是删除源码天空,第三个参数对应的是添加。

Levenshtein distance说明
Levenshtein distance最先是由俄国科学家Vladimir Levenshtein在1965年发明,用他的名字命名。不会拼读,可以叫它edit distance(编辑距离)。Levenshtein distance可以用来:
Spell checking(拼写检查)
Speech recognition(语句识别)
DNA analysis(DNA分析)
Plagiarism detection(抄袭检测) LD用mn的矩阵存储距离值。

您可能感兴趣的文章:

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://www.heiqu.com/eb3ce682a026b596259ef00e06304f27.html