简介: Hadoop 是一个实现了 MapReduce 计算模型的开源分布式并行编程框架,借助于 Hadoop, 程序员可以轻松地编写分布式并行程序,将其运行于计算机集群上,完成海量数据的计算。本文将介绍 MapReduce 计算模型,分布式并行计算等基本概念,以及 Hadoop 的安装部署和基本运行方法。
Hadoop 简介
Hadoop 是一个开源的可运行于大规模集群上的分布式并行编程框架,由于分布式存储对于分布式编程来说是必不可少的,这个框架中还包含了一个分布式文件系统 HDFS( Hadoop Distributed File System )。也许到目前为止,Hadoop 还不是那么广为人知,其最新的版本号也仅仅是 0.16,距离 1.0 似乎都还有很长的一段距离,但提及 Hadoop 一脉相承的另外两个开源项目 Nutch 和 Lucene ( 三者的创始人都是 Doug Cutting ),那绝对是大名鼎鼎。Lucene 是一个用 Java 开发的开源高性能全文检索工具包,它不是一个完整的应用程序,而是一套简单易用的 API 。在全世界范围内,已有无数的软件系统,Web 网站基于 Lucene 实现了全文检索功能,后来 Doug Cutting 又开创了第一个开源的 Web 搜索引擎() Nutch, 它在 Lucene 的基础上增加了网络爬虫和一些和 Web 相关的功能,一些解析各类文档格式的插件等,此外,Nutch 中还包含了一个分布式文件系统用于存储数据。从 Nutch 0.8.0 版本之后,Doug Cutting 把 Nutch 中的分布式文件系统以及实现 MapReduce 算法的代码独立出来形成了一个新的开源项 Hadoop。Nutch 也演化为基于 Lucene 全文检索以及 Hadoop 分布式计算平台的一个开源搜索引擎。
基于 Hadoop,你可以轻松地编写可处理海量数据的分布式并行程序,并将其运行于由成百上千个结点组成的大规模计算机集群上。从目前的情况来看,Hadoop 注定会有一个辉煌的未来:"云计算"是目前灸手可热的技术名词,全球各大 IT 公司都在投资和推广这种新一代的计算模式,而 Hadoop 又被其中几家主要的公司用作其"云计算"环境中的重要基础软件,如:雅虎正在借助 Hadoop 开源平台的力量对抗 Google, 除了资助 Hadoop 开发团队外,还在开发基于 Hadoop 的开源项目 Pig, 这是一个专注于海量数据集分析的分布式计算程序。Amazon 公司基于 Hadoop 推出了 Amazon S3 ( Amazon Simple Storage Service ),提供可靠,快速,可扩展的网络存储服务,以及一个商用的云计算平台 Amazon EC2 ( Amazon Elastic Compute Cloud )。在 IBM 公司的云计算项目--"蓝云计划"中,Hadoop 也是其中重要的基础软件。Google 正在跟IBM合作,共同推广基于 Hadoop 的云计算。
迎接编程方式的变革
在摩尔定律的作用下,以前程序员根本不用考虑计算机的性能会跟不上软件的发展,因为约每隔 18 个月,CPU 的主频就会增加一倍,性能也将提升一倍,软件根本不用做任何改变,就可以享受免费的性能提升。然而,由于晶体管电路已经逐渐接近其物理上的性能极限,摩尔定律在 2005 年左右开始失效了,人类再也不能期待单个 CPU 的速度每隔 18 个月就翻一倍,为我们提供越来越快的计算性能。Intel, AMD, IBM 等芯片厂商开始从多核这个角度来挖掘 CPU 的性能潜力,多核时代以及互联网时代的到来,将使软件编程方式发生重大变革,基于多核的多线程并发编程以及基于大规模计算机集群的分布式并行编程是将来软件性能提升的主要途径。
许多人认为这种编程方式的重大变化将带来一次软件的并发危机,因为我们传统的软件方式基本上是单指令单数据流的顺序执行,这种顺序执行十分符合人类的思考习惯,却与并发并行编程格格不入。基于集群的分布式并行编程能够让软件与数据同时运行在连成一个网络的许多台计算机上,这里的每一台计算机均可以是一台普通的 PC 机。这样的分布式并行环境的最大优点是可以很容易的通过增加计算机来扩充新的计算结点,并由此获得不可思议的海量计算能力, 同时又具有相当强的容错能力,一批计算结点失效也不会影响计算的正常进行以及结果的正确性。Google 就是这么做的,他们使用了叫做 MapReduce 的并行编程模型进行分布式并行编程,运行在叫做 GFS ( Google File System )的分布式文件系统上,为全球亿万用户提供搜索服务。
Hadoop 实现了 Google 的 MapReduce 编程模型,提供了简单易用的编程接口,也提供了它自己的分布式文件系统 HDFS,与 Google 不同的是,Hadoop 是开源的,任何人都可以使用这个框架来进行并行编程。如果说分布式并行编程的难度足以让普通程序员望而生畏的话,开源的 Hadoop 的出现极大的降低了它的门槛,读完本文,你会发现基于 Hadoop 编程非常简单,无须任何并行开发经验,你也可以轻松的开发出分布式的并行程序,并让其令人难以置信地同时运行在数百台机器上,然后在短时间内完成海量数据的计算。你可能会觉得你不可能会拥有数百台机器来运行你的并行程序,而事实上,随着"云计算"的普及,任何人都可以轻松获得这样的海量计算能力。例如现在 Amazon 公司的云计算平台 Amazon EC2 已经提供了这种按需计算的租用服务,有兴趣的读者可以去了解一下,这篇系列文章的第三部分将有所介绍。
掌握一点分布式并行编程的知识对将来的程序员是必不可少的,Hadoop 是如此的简便好用,何不尝试一下呢?也许你已经急不可耐的想试一下基于 Hadoop 的编程是怎么回事了,但毕竟这种编程模型与传统的顺序程序大不相同,掌握一点基础知识才能更好地理解基于 Hadoop 的分布式并行程序是如何编写和运行的。因此本文会先介绍一下 MapReduce 的计算模型,Hadoop 中的分布式文件系统 HDFS, Hadoop 是如何实现并行计算的,然后才介绍如何安装和部署 Hadoop 框架,以及如何运行 Hadoop 程序。