void *thread_p(void *null){
int num, x=0;
do{
pthread_mutex_lock(&lock);
num=count--;
pthread_mutex_unlock(&lock);
if(num>0){
if(zhishu(num))x++;
}else{
break;
}
}while(true);
std::cout<<' '<<x<<' ';
pthread_exit(NULL);
return null;
}
在线程与线程之间,对于count这个变量是相互竞争的,我们需要确保同时只能有一个线程操作count变量。我们通过 pthread_mutex_t lock; 添加一个互斥锁。当执行 pthread_mutex_lock(&lock); 时,线程检查lock锁的情况,如果已锁定,则等待、重复检查,阻塞后续代码运行;如果锁已释放,则锁定,并执行后续代码。相应的, pthread_mutex_unlock(&lock); 就是解除锁状态。
由于编译器在编译的同时,进行编译优化,如果一个语句没有明确做什么事情,对其他语句的执行也没有影响时,会被编译器优化掉。在上面的代码中,我加入了统计质数数量的代码,如果不加的话,像这样的代码:
复制代码 代码如下:
for (int j = 0; j < 4000000; j++) {
zhishu(j);
}
是会直接被编译器跳过的,实际不会运行。
添加addon的写法已经介绍过了,我们实现从javascript接收一个参数,表示线程数,然后在c中创建指定数量的线程完成质数检索。完整代码:
复制代码 代码如下:
#include <nan.h>
#include <math.h>
#include <iostream>
#include "pthreads\pthread.h"
#define MAX_THREAD 100
using namespace v8;
int count=4000000;
pthread_t tid[MAX_THREAD];
pthread_mutex_t lock;
void *thread_p(void *null){
int num, x=0;
do{
pthread_mutex_lock(&lock);
num=count--;
pthread_mutex_unlock(&lock);
if(num>0){
if(zhishu(num))x++;
}else{
break;
}
}while(true);
std::cout<<' '<<x<<' ';
pthread_exit(NULL);
return null;
}
NAN_METHOD(Zhishu){
NanScope();
pthread_mutex_init(&lock,NULL);
double arg0=args[0]->NumberValue();
int c=0;
for (int j = 0; j < arg0 && j<MAX_THREAD; j++) {
pthread_create(&tid[j],NULL,thread_p,NULL);
}
for (int j = 0; j < arg0 && j<MAX_THREAD; j++) {
pthread_join(tid[j],NULL);
}
NanReturnUndefined();
}
void Init(Handle<Object> exports){
exports->Set(NanSymbol("zhishu"), FunctionTemplate::New(Zhishu)->GetFunction());
}
NODE_MODULE(hello, Init);
phread_create可以创建线程,默认是joinable的,这个时候子线程受制于主线程;phread_join阻塞住主线程,等待子线程join,直到子线程退出。如果子线程已退出,则phread_join不会做任何事。所以对所有的线程都执行thread_join,可以保证所有的线程退出后才会例主线程继续进行。
完善一下nodejs脚本:
复制代码 代码如下: