此外,有时候我们可以对特征进行研究后做一个更好的处理。比如,我们研究商品的销量对应的特征。里面有一个原始特征是季节春夏秋冬。我们可以将其转化为淡季和旺季这样的二值特征,方便建模。当然有时候转化为三值特征或者四值特征也是可以的。
对于分类问题的特征输出,我们一般需要用sklearn的LabelEncoder将其转化为0,1,2,...这样的类别标签值。
5. 连续特征的离散化处理对于连续特征,有时候我们也可以将其做离散化处理。这样特征变得高维稀疏,方便一些算法的处理。
对常用的方法是根据阈值进行分组,比如我们根据连续值特征的分位数,将该特征分为高,中和低三个特征。将分位数从0-0.3的设置为高,0.3-0.7的设置为中,0.7-1的设置为高。
当然还有高级一些的方法。比如使用GBDT。在LR+GBDT的经典模型中,就是使用GDBT来先将连续值转化为离散值。那么如何转化呢?比如我们用训练集的所有连续值和标签输出来训练GBDT,最后得到的GBDT模型有两颗决策树,第一颗决策树有三个叶子节点,第二颗决策树有4个叶子节点。如果某一个样本在第一颗决策树会落在第二个叶子节点,在第二颗决策树落在第4颗叶子节点,那么它的编码就是0,1,0,0,0,0,1,一共七个离散特征,其中会有两个取值为1的位置,分别对应每颗决策树中样本落点的位置。在sklearn中,我们可以用GradientBoostingClassifier的 apply方法很方便的得到样本离散化后的特征,然后使用独热编码即可。
具体的一个示例代码如下:
from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingClassifier from sklearn.preprocessing import OneHotEncoder X, y = make_classification(n_samples=10) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) gbc = GradientBoostingClassifier(n_estimators=2) one_hot = OneHotEncoder() gbc.fit(X_train, y_train) X_train_new = one_hot.fit_transform(gbc.apply(X_train)[:, :, 0]) print (X_train_new.todense())