结论:
1) 随着 n 值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5 和 3 可以忽略。
2) 而 n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键
1) 一般情况下,算法中的基本操作语句的重复执行次数是问题规模 n 的某个函数,用 T(n)表示,若有某个辅助函数 f(n),使得当 n 趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称 f(n)是 T(n)的同数量级函数。记作 T(n)= O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。
2) T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的 T(n) 不同,但时间复杂度相同,都为 O(n²)。
3) 计算时间复杂度的方法:
用常数 1 代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)
4.4 常见的时间复杂度1) 常数阶 O(1)
2) 对数阶 O(log2n)
3) 线性阶 O(n)
4) 线性对数阶 O(nlog2n)
5) 平方阶 O(n^2)
6) 立方阶 O(n^3)
7) k 次方阶 O(n^k)
8) 指数阶 O(2^n)
说明:
1) 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<Ο(nk)<Ο(2n) ,随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低
2) 从图中可见,我们应该尽可能避免使用指数阶的算法
无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)。
上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。
4.4.1.2 对数阶 O(log2n)说明: 在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 n 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log3n) 。
4.4.1.3 线性阶 O(n)说明: 这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度。
4.4.1.4 线性对数阶 O(nlogN)说明: 线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)。
4.4.1.5 平方阶 O(n²)