这里,我们简单地使用了在传入的定界符中 作为 ','的 loadtxt 函数 , 因为这是一个CSV文件。
现在,如果我们打印 df,我们将看到可以使用的相当不错的numpy数组中的数据。
由于数据量很大,我们仅打印了前5行。
利弊
使用此功能的一个重要方面是您可以将文件中的数据快速加载到numpy数组中。
缺点是您不能有其他数据类型或数据中缺少行。
3. Numpy.genfromtxt()我们将使用数据集,即第一个示例中使用的数据集“ 100 Sales Records.csv”,以证明其中可以包含多种数据类型。
让我们跳到代码。
为了更清楚地看到它,我们可以以数据框格式看到它,即
这是什么?哦,它已跳过所有具有字符串数据类型的列。怎么处理呢?
只需添加另一个 dtype 参数并将dtype 设置 为None即可,这意味着它必须照顾每一列本身的数据类型。不将整个数据转换为单个dtype。
然后输出
比第一个要好得多,但是这里的“列”标题是“行”,要使其成为列标题,我们必须添加另一个参数,即 名称 ,并将其设置为 True, 这样它将第一行作为“列标题”。
即
我们可以将其打印为
4. Pandas.read_csv()