此时左表和右表都不再是普通的表,而是分区表,分区字段是pt,按照日期进行数据分区。同时两表查询条件依然使用OR进行连接。试想,如果不能提前对两表进行过滤,那么会有非常巨量的数据要首先进行连接处理,这个代价是非常大的。但是如果按照我们在2中的分析,使用OR连接两表的过滤条件,又不能随意的进行谓词下推,那要如何处理呢?SparkSql在这里使用了一种叫做“分区裁剪”的优化手段,即把分区并不看做普通的过滤条件,而是使用了“一刀切”的方法,把不符合查询分区条件的目录直接排除在待扫描的目录之外。
我们知道分区表在HDFS上是按照目录来存储一个分区的数据的,那么在进行分区裁剪时,直接把要扫描的HDFS目录通知Spark的Scan操作符,这样,Spark在进行扫描时,就可以直接咔嚓掉其他的分区数据了。但是,要完成这种优化,需要SparkSql的语义分析逻辑能够正确的分析出Sql语句所要表达的精确目的,所以分区字段在SparkSql的元数据中也是独立于其他普通字段,进行了单独的标示,就是为了方便语义分析逻辑能区别处理Sql语句中where条件里的这种特殊情况。