给出 N 个单词组成的熟词表,以及一篇全用小写英文书写的文章,按最早出现的顺序写出所有不在熟词表中的生词。
检索/查询功能是Trie树最原始的功能。给定一组字符串,查找某个字符串是否出现过,思路就是从根节点开始一个一个字符进行比较:
如果沿路比较,发现不同的字符,则表示该字符串在集合中不存在。
如果所有的字符全部比较完并且全部相同,还需判断最后一个节点的标志位(标记该节点是否代表一个关键字)。
Trie树的局限性如前文所讲,Trie 的核心思想是空间换时间,利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的。
假设字符的种数有m个,有若干个长度为n的字符串构成了一个 Trie树 ,则每个节点的出度为 m(即每个节点的可能子节点数量为m),Trie树 的高度为n。很明显我们浪费了大量的空间来存储字符,此时Trie树的最坏空间复杂度为O(m^n)。也正由于每个节点的出度为m,所以我们能够沿着树的一个个分支高效的向下逐个字符的查询,而不是遍历所有的字符串来查询,此时Trie树的最坏时间复杂度为O(n)。
这正是空间换时间的体现,也是利用公共前缀降低查询时间开销的体现。
LeetCode 第 208 号问题就是 实现 Trie (前缀树),感兴趣的小伙伴可以去实操一下。
希望今天的这篇文章能帮大家认识到掌握好了数据结构可以在工作中带来多大的帮助,大家加油:)