我:(我突然想起来原来面试官是想问这个,怪自己刚刚为什么就没想到这个呢。)哦哦哦。您刚刚问的是这个意思啊,在创建多列索引时,我们根据业务需求,where子句中使用最频繁的一列放在最左边,因为MySQL索引查询会遵循最左前缀匹配的原则,即最左优先,在检索数据时从联合索引的最左边开始匹配。所以当我们创建一个联合索引的时候,如(key1,key2,key3),相当于创建了(key1)、(key1,key2)和(key1,key2,key3)三个索引,这就是最左匹配原则。
虽然我一开始有点懵,没有联想到最左前缀匹配,但是面试官还是引导了我。很友善。
索引下推、查询优化面试官:你们线上用的MySQL是哪个版本啊呢?
我:我们MySQL是5.7
面试官:那你知道在MySQL 5.6中,对索引做了哪些优化吗?
我:不好意思,这个我没有去了解过。(事后我查了一下,有一个比较重要的 :Index Condition Pushdown Optimization)
科普时间—— Index Condition Pushdown(索引下推) MySQL 5.6引入了索引下推优化,默认开启,使用SET optimizer_switch = 'index_condition_pushdown=off';可以将其关闭。官方文档中给的例子和解释如下: people表中(zipcode,lastname,firstname)构成一个索引
SELECT * FROM people WHERE zipcode='95054' AND lastname LIKE '%etrunia%' AND address LIKE '%Main Street%';
如果没有使用索引下推技术,则MySQL会通过zipcode='95054'从存储引擎中查询对应的数据,返回到MySQL服务端,然后MySQL服务端基于lastname LIKE '%etrunia%'和address LIKE '%Main Street%'来判断数据是否符合条件。 如果使用了索引下推技术,则MYSQL首先会返回符合zipcode='95054'的索引,然后根据lastname LIKE '%etrunia%'和address LIKE '%Main Street%'来判断索引是否符合条件。如果符合条件,则根据该索引来定位对应的数据,如果不符合,则直接reject掉。 有了索引下推优化,可以在有like条件查询的情况下,减少回表次数。
面试官:你们创建的那么多索引,到底有没有生效,或者说你们的SQL语句有没有使用索引查询你们有统计过吗?
我:这个还没有统计过,除非遇到慢SQL的时候我们才会去排查
面试官:那排查的时候,有什么手段可以知道有没有走索引查询呢?
我:可以通过explain查看sql语句的执行计划,通过执行计划来分析索引使用情况
面试官:那什么情况下会发生明明创建了索引,但是执行的时候并没有通过索引呢?
我:(依稀记得和优化器有关,但是这个问题并没有回答好)
科普时间——查询优化器 一条SQL语句的查询,可以有不同的执行方案,至于最终选择哪种方案,需要通过优化器进行选择,选择执行成本最低的方案。 在一条单表查询语句真正执行之前,MySQL的查询优化器会找出执行该语句所有可能使用的方案,对比之后找出成本最低的方案。这个成本最低的方案就是所谓的执行计划。 优化过程大致如下: 1、根据搜索条件,找出所有可能使用的索引 2、计算全表扫描的代价 3、计算使用不同索引执行查询的代价 4、对比各种执行方案的代价,找出成本最低的那一个
面试官:哦,索引有关的知识我们暂时就问这么多吧。你们线上数据的事务隔离级别是什么呀?
我:(后面关于事务隔离级别的问题了,就不展开了)
感觉是因为我回答的不够好,如果这几个索引问题我都会的话,他还会追问更多,恐怕会被虐的更惨
总结&感悟