12张图带你彻底理解分布式事务产生的场景和解决方案!! (2)

单体系统访问多个数据库实例,也就是跨数据源访问时会产生分布式事务。例如,我们的系统中的订单数据库和交易数据库是放在不同的数据库实例中,当用户发起退款时,会同时操作用户的订单数据库和交易数据库,在交易数据库中执行退款操作,在订单数据库中将订单的状态变更为已退款。由于数据分布在不同的数据库实例,需要通过不同的数据库连接会话来操作数据库中的数据,此时,就产生了分布式事务。

12张图带你彻底理解分布式事务产生的场景和解决方案!!

多服务单数据库

多个微服务访问同一个数据库。例如,订单微服务和库存微服务访问同一个数据库也会产生分布式事务,原因是:多个微服务访问同一个数据库,本质上也是通过不同的数据库会话来操作数据库,此时就会产生分布式事务。

12张图带你彻底理解分布式事务产生的场景和解决方案!!

注意:跨数据库实例场景和多服务单数据库场景,本质上都是因为会产生不同的数据库会话来操作数据库中的数据,进而产生分布式事务。这两种场景是大家比较容易忽略的。

分布式事务解决方案

知道了分布式事务产生的场景后,接下来,我们就聊聊分布式事务具体有哪些解决方案。

2PC方案

2PC即两阶段提交协议,是将整个事务流程分为两个阶段,准备阶段(Prepare phase)、提交阶段(commit
phase),2是指两个阶段,P是指准备阶段,C是指提交阶段。

这里,我们用MySQL数据库举例,MySQL数据库支持两阶段提交协议,可以分为成功和失败两种情况。

成功情况

12张图带你彻底理解分布式事务产生的场景和解决方案!!

失败情况

12张图带你彻底理解分布式事务产生的场景和解决方案!!

具体流程如下:

准备阶段(Prepare phase): 事务管理器给每个参与者发送Prepare消息,每个数据库参与者在本地执行事
务,并写本地的Undo/Redo日志,此时事务没有提交。
(Undo日志是记录修改前的数据,用于数据库回滚,Redo日志是记录修改后的数据,用于提交事务后写入数
据文件)

提交阶段(commit phase): 如果事务管理器收到了参与者的执行失败或者超时消息时,直接给每个参与者
发送回滚(Rollback)消息;否则,发送提交(Commit)消息;参与者根据事务管理器的指令执行提交或者回滚操
作,并释放事务处理过程中使用的锁资源。

使用2PC方案时,需要注意的是:必须在最后阶段释放锁资源。

可靠消息最终一致性方案

可靠消息最终一致性方案是指当事务发起方执行完成本地事务后并发出一条消息,事务参与方(消息消费者)一定能
够接收消息并处理事务成功,此方案强调的是只要消息发给事务参与方最终事务要达到一致。

12张图带你彻底理解分布式事务产生的场景和解决方案!!

事务发起方(消息生产方)将消息发给消息中间件,事务参与方从消息中间件接收消息,事务发起方和消息中间件
之间,事务参与方(消息消费方)和消息中间件之间都是通过网络通信,由于网络通信的不确定性会导致分布式事
务问题。 所以,我们在具体方案中会引入消息确认服务和消息恢复服务。

使用可靠消息最终一致性方案时需要注意几个问题:

本地事务与消息发送的原子性问题。

事务参与方接收消息的可靠性问题。

消息重复消费的问题(需要实现幂等)。

TCC方案

TCC分为三个阶段:

Try 阶段 是做业务检查(一致性)及资源预留(隔离),此阶段仅是一个初步操作,它和后续的Confirm 一起才能
真正构成一个完整的业务逻辑。

Confirm 阶段 是做确认提交,Try阶段所有分支事务执行成功后开始执行 Confirm。通常情况下,采用TCC则
认为 Confirm阶段是不会出错的。即:只要Try成功,Confirm一定成功。若Confirm阶段真的出错了,需引
入重试机制或人工处理。

Cancel 阶段 是在业务执行错误需要回滚的状态下执行分支事务的业务取消,预留资源释放。通常情况下,采
用TCC则认为Cancel阶段也是一定成功的。若Cancel阶段真的出错了,需引入重试机制或人工处理。

12张图带你彻底理解分布式事务产生的场景和解决方案!!

使用TCC分布式解决方案时需要注意空回滚、幂等、悬挂等问题。

最大努力通知型方案

此种方案主要用于多个不同系统之前保证数据的最终一致性,大体如下图所示。

12张图带你彻底理解分布式事务产生的场景和解决方案!!

使用最大努力通知型方案需要注意幂等和数据的回查操作。

好了,今天就到这儿吧,后续我们会针对每种分布式事务解决方案进行具体介绍,下期见!!

重磅福利

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wsfpzj.html