测试结果如下:
goos: darwin goarch: amd64 pkg: github.com/thinkeridea/example/iouitl_readall BenchmarkJson-8 100000 13297 ns/op 13669 B/op 207 allocs/op BenchmarkJsonPool-8 100000 13310 ns/op 10218 B/op 206 allocs/op BenchmarkJsonIter-8 500000 2948 ns/op 3594 B/op 4 allocs/op BenchmarkJsonIterPool-8 200000 6126 ns/op 6040 B/op 144 allocs/op PASS ok github.com/thinkeridea/example/iouitl_readall 12.716s这里使用了两个 json 包, 一个是标准库的,一个是 jsoniter (也是社区反馈效率最高的),对比两个包使用 sync.Pool 和不使用之间的差异,发现标准库 json 包使用后内存有少量减少,但是运行效率稍微下降了,差异不是很大,jsoniter 包差异之所谓非常明显,发现使用 sync.Pool 之后不仅内存分配更多了,执行效率也大幅度下降,差了将近3倍有余。
是不是很奔溃,这是啥情况 jsoniter 本身就使用了 sync.Pool 作缓冲,我们使用 jsoniter.NewEncoder(buffer) 创建一个序列化实例,但是其内部并没有直接使用 io.Writer 而是先使用缓冲序列化数据,之后写入 io.Writer, 具体代码如下:
// Flush writes any buffered data to the underlying io.Writer. func (stream *Stream) Flush() error { if stream.out == nil { return nil } if stream.Error != nil { return stream.Error } n, err := stream.out.Write(stream.buf) if err != nil { if stream.Error == nil { stream.Error = err } return err } stream.buf = stream.buf[n:] return nil }这样一来我们使用 buffer 做 json 序列化优化效果就大打折扣,甚至适得其反了。
再次感谢 “wxe” 网友的提问,这里没有使用实际的应用场景做性能测试,主要发现在性能测试中使用 http 服务会导致 connect: can't assign requested address 问题,所以测试用使用了函数模拟,如果有朋友有更好的测试方法欢迎一起交流。