1)Linux的初始内核映象以gzip压缩文件的格式存放在zImage或bzImage之中,内核的自举代码将它解压到1M内存开始处.在内核初始化时, 如果加载了压缩的initrd映象, 内核会将它解压到内存盘中,这两处解压过程都使用了lib/inflate.c文件.
2)inflate.c是从gzip源程序中分离出来的, 包含了一些对全局数据的直接引用,在使用时需要直接嵌入到代码中.gzip压缩文件时总是在前32K字节的范围内寻找重复的字符串进行编码,在解压时需要一个至少为32K字节的解压缓冲区,它定义为window[WSIZE].inflate.c使用get_byte()读取输入文件,它被定义成宏来提高效率.输入缓冲区指针必须定义为inptr, inflate.c中对之有减量操作.inflate.c调用flush_window()来输出window缓冲区中的解压出的字节串,每次输出长度用outcnt变量表示.在flush_window()中, 还必须对输出字节串计算CRC并且刷新crc变量. 在调用gunzip()开始解压之前,调用makecrc()初始化CRC计算表. 最后gunzip()返回0表示解压成功.
3)zImage或bzImage由16位引导代码和32位内核自解压映象两个部分组成. 对于zImage,内核自解压映象被加载到物理地址0x1000, 内核被解压到1M的部位. 对于bzImage,内核自解压映象被加载到1M开始的地方,内核被解压为两个片段,一个起始于物理地址0x2000-0x90000,另一个起始于高端解压映象之后,离1M开始处不小于低端片段最大长度的区域. 解压完成后,这两个片段被合并到1M的起始位置.
解压根内存盘映象文件的代码
--------------------------
; drivers/block/rd.c
#ifdef BUILD_CRAMDISK
#define OF(args) args ; 用于函数原型声明的宏
#ifndef memzero
#define memzero(s, n) memset ((s), 0, (n))
#endif
typedef unsigned char uch; 定义inflate.c所使用的3种数据类型
typedef unsigned short ush;
typedef unsigned long ulg;
#define INBUFSIZ 4096 用户输入缓冲区尺寸
#define WSIZE 0x8000
static uch *inbuf; 用户输入缓冲区,与inflate.c无关
static uch *window; 解压窗口
static unsigned insize;
static unsigned inptr;
static unsigned outcnt;
static int exit_code;
static long bytes_out; 总解压输出长度,与inflate.c无关
static struct file *crd_infp, *crd_outfp;
#define get_byte() (inptr
一些调试宏
#define Assert(cond,msg)
#define Trace(x)
#define Tracev(x)
#define Tracevv(x)
#define Tracec(c,x)
#define Tracecv(c,x)
#define STATIC static
static int fill_inbuf(void);
static void flush_window(void);
static void *malloc(int size);
static void free(void *where);
static void error(char *m);
static void gzip_mark(void **);
static void gzip_release(void **);
#include "../../lib/inflate.c"
static void __init *malloc(int size)
{
return kmalloc(size, GFP_KERNEL);
}
static void __init free(void *where)
{
kfree(where);
}
static void __init gzip_mark(void **ptr)
{
; 读取用户一个标记
}
static void __init gzip_release(void **ptr)
{
; 归还用户标记
}
static int __init fill_inbuf(void) 填充输入缓冲区
{
if (exit_code) return -1;
insize = crd_infp->f_op->read(crd_infp, inbuf, INBUFSIZ,
if (insize == 0) return -1;
inptr = 1;
return inbuf[0];
}
static void __init flush_window(void) 输出window缓冲区中outcnt个字节串
{
ulg c = crc;
unsigned n;
uch *in, ch;
crd_outfp->f_op->write(crd_outfp, window, outcnt,
in = window;
for (n = 0; n ch = *in++;
c = crc_32_tab[((int)c ^ ch) 0xff] ^ (c >> 8); 计算输出串的CRC
}
crc = c;
bytes_out += (ulg)outcnt; 刷新总字节数
outcnt = 0;
}
static void __init error(char *x) 解压出错调用的函数
{
printk(KERN_ERR "%s", x);
exit_code = 1;
}
static int __init
crd_load(struct file * fp, struct file *outfp)
{
int result;
insize = 0;
inptr = 0;
outcnt = 0;
exit_code = 0;
bytes_out = 0;
crc = (ulg)0xffffffffL;
crd_infp = fp;
crd_outfp = outfp;
inbuf = kmalloc(INBUFSIZ, GFP_KERNEL);
if (inbuf == 0) {
printk(KERN_ERR "RAMDISK: Couldn't allocate gzip buffer\n");
return -1;
}
window = kmalloc(WSIZE, GFP_KERNEL);
if (window == 0) {
printk(KERN_ERR "RAMDISK: Couldn't allocate gzip window\n");
kfree(inbuf);
return -1;
}
makecrc();
result = gunzip();
kfree(inbuf);
kfree(window);
return result;
}
#endif
32位内核自解压代码
------------------
; arch/i386/boot/compressed/head.S
.text
#include ·
#include
.globl startup_32 对于zImage该入口地址为0x1000; 对于bzImage为0x101000
startup_32:
cld
cli
movl $(__KERNEL_DS),%eax
movl %eax,%ds
movl %eax,%es
movl %eax,%fs
movl %eax,%gs
lss SYMBOL_NAME(stack_start),%esp # 自解压代码的堆栈为misc.c中定义的16K字节的数组
xorl %eax,%eax
1: incl %eax # check that A20 really IS enabled
movl %eax,0x000000 # loop forever if it isn't
cmpl %eax,0x100000
je 1b
pushl $0
popfl
xorl %eax,%eax
movl $ SYMBOL_NAME(_edata),%edi
movl $ SYMBOL_NAME(_end),%ecx
subl %edi,%ecx
cld
rep
stosb
subl $16,%esp # place for structure on the stack
movl %esp,%eax
pushl %esi # real mode pointer as second arg
pushl %eax # address of structure as first arg
call SYMBOL_NAME(decompress_kernel)
orl %eax,%eax # 如果返回非零,则表示为内核解压为低端和高端的两个片断
jnz 3f
popl %esi # discard address
popl %esi # real mode pointer
xorl %ebx,%ebx
ljmp $(__KERNEL_CS), $0x100000 # 运行start_kernel
3:
movl $move_routine_start,%esi
movl $0x1000,%edi
movl $move_routine_end,%ecx
subl %esi,%ecx
addl $3,%ecx
shrl $2,%ecx # 按字取整
cld
rep
movsl # 将内核片断合并代码复制到0x1000区域, 内核的片段起始为0x2000
popl %esi # discard the address
popl %ebx # real mode pointer
popl %esi # low_buffer_start 内核低端片段的起始地址
popl %ecx # lcount 内核低端片段的字节数量
popl %edx # high_buffer_start 内核高端片段的起始地址
popl %eax # hcount 内核高端片段的字节数量
movl $0x100000,%edi 内核合并的起始地址
cli # make sure we don't get interrupted
ljmp $(__KERNEL_CS), $0x1000 # and jump to the move routine
move_routine_start:
movl %ecx,%ebp
shrl $2,%ecx
rep
movsl # 按字拷贝第1个片段
movl %ebp,%ecx
andl $3,%ecx
rep
movsb # 传送不完全字
movl %edx,%esi
movl %eax,%ecx # NOTE: rep movsb won't move if %ecx == 0
addl $3,%ecx
shrl $2,%ecx # 按字对齐
rep
movsl # 按字拷贝第2个片段
movl %ebx,%esi # Restore setup pointer
xorl %ebx,%ebx
ljmp $(__KERNEL_CS), $0x100000 # 运行start_kernel
move_routine_end:
; arch/i386/boot/compressed/misc.c
#define OF(args) args
#define STATIC static
#undef memset
#undef memcpy
#define memzero(s, n) memset ((s), 0, (n))
ypedef unsigned char uch;
typedef unsigned short ush;
typedef unsigned long ulg;
#define WSIZE 0x8000
static uch *inbuf;
static uch window[WSIZE];
static unsigned insize = 0;
static unsigned inptr = 0;
static unsigned outcnt = 0;
#define ASCII_FLAG 0x01
#define CONTINUATION 0x02
#define EXTRA_FIELD 0x04
#define ORIG_NAME 0x08
#define COMMENT 0x10
#define ENCRYPTED 0x20
#define RESERVED 0xC0
#define get_byte() (inptr
#ifdef DEBUG
# define Assert(cond,msg) {if(!(cond)) error(msg);}
# define Trace(x) fprintf x
# define Tracev(x) {if (verbose) fprintf x ;}
# define Tracevv(x) {if (verbose>1) fprintf x ;}
# define Tracec(c,x) {if (verbose (c)) fprintf x ;}
# define Tracecv(c,x) {if (verbose>1 (c)) fprintf x ;}
#else
# define Assert(cond,msg)
# define Trace(x)
# define Tracev(x)
# define Tracevv(x)
# define Tracec(c,x)
# define Tracecv(c,x)
#endif
static int fill_inbuf(void);
static void flush_window(void);
static void error(char *m);
static void gzip_mark(void **);
static void gzip_release(void **);
static unsigned char *real_mode;
#define EXT_MEM_K (*(unsigned short *)(real_mode + 0x2))
#ifndef STANDARD_MEMORY_BIOS_CALL
#define ALT_MEM_K (*(unsigned long *)(real_mode + 0x1e0))
#endif
#define SCREEN_INFO (*(struct screen_info *)(real_mode+0))
extern char input_data[];
extern int input_len;
static long bytes_out = 0;
static uch *output_data;
static unsigned long output_ptr = 0;
static void *malloc(int size);
static void free(void *where);
static void error(char *m);
static void gzip_mark(void **);
static void gzip_release(void **);
static void puts(const char *);
extern int end;
static long free_mem_ptr = (long)
static long free_mem_end_ptr;
#define INPLACE_MOVE_ROUTINE 0x1000 内核片段合并代码的运行地址
#define LOW_BUFFER_START 0x2000 内核低端解压片段的起始地址
#define LOW_BUFFER_MAX 0x90000 内核低端解压片段的终止地址
#define HEAP_SIZE 0x3000 为解压低码保留的堆的尺寸,堆起始于BSS的结束
static unsigned int low_buffer_end, low_buffer_size;
static int high_loaded =0;
static uch *high_buffer_start ;
static char *vidmem = (char *)0xb8000;
static int vidport;
static int lines, cols;
#include "../../../../lib/inflate.c"
static void *malloc(int size)
{
void *p;
if (size if (free_mem_ptr
free_mem_ptr = (free_mem_ptr + 3) ~3;
p = (void *)free_mem_ptr;
free_mem_ptr += size;
if (free_mem_ptr >= free_mem_end_ptr)
error("\nOut of memory\n");
return p;
}
static void free(void *where)
{
}
static void gzip_mark(void **ptr)
{
*ptr = (void *) free_mem_ptr;
}
static void gzip_release(void **ptr)
{
free_mem_ptr = (long) *ptr;
}
static void scroll(void)
{
int i;
memcpy ( vidmem, vidmem + cols * 2, ( lines - 1 ) * cols * 2 );
for ( i = ( lines - 1 ) * cols * 2; i vidmem[ i ] = ' ';
}
static void puts(const char *s)
{
int x,y,pos;
char c;
x = SCREEN_INFO.orig_x;
y = SCREEN_INFO.orig_y;
while ( ( c = *s++ ) != '\0' ) {
if ( c == '\n' ) {
x = 0;
if ( ++y >= lines ) {
scroll();
y--;
}
} else {
vidmem [ ( x + cols * y ) * 2 ] = c;
if ( ++x >= cols ) {
x = 0;
if ( ++y >= lines ) {
scroll();
y--;
}
}
}
}
SCREEN_INFO.orig_x = x;
SCREEN_INFO.orig_y = y;
pos = (x + cols * y) * 2;
outb_p(14, vidport);
outb_p(0xff (pos >> 9), vidport+1);
outb_p(15, vidport);
outb_p(0xff (pos >> 1), vidport+1);
}
void* memset(void* s, int c, size_t n)
{
int i;
char *ss = (char*)s;
for (i=0;i return s;
}
void* memcpy(void* __dest, __const void* __src,
size_t __n)
{
int i;
char *d = (char *)__dest, *s = (char *)__src;
for (i=0;i return __dest;
}
static int fill_inbuf(void)
{
if (insize != 0) {
error("ran out of input data\n");
}
inbuf = input_data;
insize = input_len;
inptr = 1;
return inbuf[0];
}
static void flush_window_low(void)
{
ulg c = crc;
unsigned n;
uch *in, *out, ch;
in = window;
out =
for (n = 0; n ch = *out++ = *in++;
c = crc_32_tab[((int)c ^ ch) 0xff] ^ (c >> 8);
}
crc = c;
bytes_out += (ulg)outcnt;
output_ptr += (ulg)outcnt;
outcnt = 0;
}
static void flush_window_high(void)
{
ulg c = crc;
unsigned n;
uch *in, ch;
in = window;
for (n = 0; n ch = *output_data++ = *in++;
if ((ulg)output_data == low_buffer_end) output_data=high_buffer_start;
c = crc_32_tab[((int)c ^ ch) 0xff] ^ (c >> 8);
}
crc = c;
bytes_out += (ulg)outcnt;
outcnt = 0;
}
static void flush_window(void)
{
if (high_loaded) flush_window_high();
else flush_window_low();
}
static void error(char *x)
{
puts("\n\n");
puts(x);
puts("\n\n -- System halted");
while(1);
}
#define STACK_SIZE (4096)
long user_stack [STACK_SIZE];
struct {
long * a;
short b;
} stack_start = { user_stack [STACK_SIZE] , __KERNEL_DS };
void setup_normal_output_buffer(void) 对于zImage, 直接解压到1M
{
#ifdef STANDARD_MEMORY_BIOS_CALL
if (EXT_MEM_K #else
if ((ALT_MEM_K > EXT_MEM_K ? ALT_MEM_K : EXT_MEM_K) #endif
output_data = (char *)0x100000;
free_mem_end_ptr = (long)real_mode;
}
struct moveparams {
uch *low_buffer_start; int lcount;
uch *high_buffer_start; int hcount;
};
void setup_output_buffer_if_we_run_high(struct moveparams *mv)
{
high_buffer_start = (uch *)(((ulg) + HEAP_SIZE);内核高端片段的最小起始地址
#ifdef STANDARD_MEMORY_BIOS_CALL
if (EXT_MEM_K #else
if ((ALT_MEM_K > EXT_MEM_K ? ALT_MEM_K : EXT_MEM_K) #endif
mv->low_buffer_start = output_data = (char *)LOW_BUFFER_START;
low_buffer_end = ((unsigned int)real_mode > LOW_BUFFER_MAX
? LOW_BUFFER_MAX : (unsigned int)real_mode) ~0xfff;
low_buffer_size = low_buffer_end - LOW_BUFFER_START;
high_loaded = 1;
free_mem_end_ptr = (long)high_buffer_start;
if ( (0x100000 + low_buffer_size) > ((ulg)high_buffer_start)) {
; 如果高端片段的最小起始地址小于它实际应加载的地址,则将它置为实际地址,
; 这样高端片段就无需再次移动了,否则它要向前移动
high_buffer_start = (uch *)(0x100000 + low_buffer_size);
mv->hcount = 0;
}
else mv->hcount = -1; 待定
mv->high_buffer_start = high_buffer_start;
}
void close_output_buffer_if_we_run_high(struct moveparams *mv)
{
if (bytes_out > low_buffer_size) {
mv->lcount = low_buffer_size;
if (mv->hcount)
mv->hcount = bytes_out - low_buffer_size;求出高端片段的字节数
} else { 如果解压后内核只有低端的一个片段
mv->lcount = bytes_out;
mv->hcount = 0;
}
}
int decompress_kernel(struct moveparams *mv, void *rmode)
{
real_mode = rmode;
if (SCREEN_INFO.orig_video_mode == 7) {
vidmem = (char *) 0xb0000;
vidport = 0x3b4;
} else {
vidmem = (char *) 0xb8000;
vidport = 0x3d4;
}
lines = SCREEN_INFO.orig_video_lines;
cols = SCREEN_INFO.orig_video_cols;
if (free_mem_ptr else setup_output_buffer_if_we_run_high(mv);
makecrc();
puts("Uncompressing Linux... ");
gunzip();
puts("Ok, booting the kernel.\n");
if (high_loaded) close_output_buffer_if_we_run_high(mv);
return high_loaded;
}