电商网站秒杀与抢购的系统架构[转] (4)

虽然上述的方案的确解决了线程安全的问题,但是,别忘记,我们的场景是“高并发”。也就是说,会很多这样的修改请求,每个请求都需要等待 “锁”,某些线程可能永远都没有机会抢到这个“锁”,这种请求就会死在那里。同时,这种请求会很多,瞬间增大系统的平均响应时间,结果是可用连接数被耗 尽,系统陷入异常。

3. FIFO队列思路

那好,那么我们稍微修改一下上面的场景,我们直接将请求放入队列中的,采用FIFO(First Input First Output,先进先出),这样的话,我们就不会导致某些请求永远获取不到锁。看到这里,是不是有点强行将多线程变成单线程的感觉哈。

电商网站秒杀与抢购的系统架构[转]

然后,我们现在解决了锁的问题,全部请求采用“先进先出”的队列方式来处理。那么新的问题来了,高并发的场景下,因为请求很多,很可能一瞬 间将队列内存“撑爆”,然后系统又陷入到了异常状态。或者设计一个极大的内存队列,也是一种方案,但是,系统处理完一个队列内请求的速度根本无法和疯狂涌 入队列中的数目相比。也就是说,队列内的请求会越积累越多,最终Web系统平均响应时候还是会大幅下降,系统还是陷入异常。

4. 乐观锁思路

这个时候,我们就可以讨论一下“乐观锁”的思路了。乐观锁,是相对于“悲观锁”采用更为宽松的加锁机制,大都是采用带版本号 (Version)更新。实现就是,这个数据所有请求都有资格去修改,但会获得一个该数据的版本号,只有版本号符合的才能更新成功,其他的返回抢购失败。 这样的话,我们就不需要考虑队列的问题,不过,它会增大CPU的计算开销。但是,综合来说,这是一个比较好的解决方案。

有很多软件和服务都“乐观锁”功能的支持,例如Redis中的watch就是其中之一。通过这个实现,我们保证了数据的安全。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgfjsj.html