3D数学 ---- 矩阵和线性变换 (5)

(2) 零向量的任意线性变换的结果仍然是零向量。(如果F(0) = aa0。那么F不可能是线性变换。因为F(k0) = a,但F(k0) ≠ kF(0)),因此线性变换不会导致平移(原点位置上不会变化)。

在某些文献中,线性变换的定义是平行线变换后仍然是平行线。大多数情况下它是对的,但有一个小小的例外:投影(当一条直线投影后变成一个点,能认为这个点 平行于什么?)除了这点理论上的例外,这种定义是正确的。线性变换可能造成“拉伸”,但直线不会”弯折“,所以平行线仍然保持平行。

仿射变换

仿射变换是指线性变换后接着平移。因此仿射变换的集合是线性变换的超集,任何线性变换都是仿射变换,但不是所有仿射变换都是线性变换。

任何具有形式 v\' = vM + b 的变换都是仿射变换。

可逆变换

如果存在一个逆变换可以”撤销“原变换,那么该变换是可逆的。换句话说,如果存在逆变换G,使得G(F(a)) = a,对于任意a,映射F(a)是可逆的。

存在非仿射变换的可逆变换,但暂不考虑它们。现在,我们集中精力于检测一个仿射变换是否可逆。一个仿射变换就是一个线性变换加上平移,显然,可以用相反的量”撤销“平移部分,所以问题变为一个线性变换是否可逆。

显然,除了投影以外,其他变换都能”撤销“。当物体被投影时,某一维有用的信息被抛弃了,而这些信息时不可能恢复的。因此,所有基本变换除了投影都是可逆的。

因为任意线性变换都能表达为矩阵,所以求逆变换等价于求矩阵的逆。如果矩阵是奇异的,则变换不可逆;可逆矩阵的行列式不为0。

等角变换

如果变换前后两向量夹角的大小和方向都不改变,该变换是等角的。只有平移,旋转和均匀缩放是等角变换。等角变换将会保持比例不变,镜像并不是等角变换,因为尽管两向量夹角的大小不变,但夹角的方向改变了。所有等角变换都是仿射和可逆的。

正交变换

术语“正交”用来描述具有某种性质的矩阵。正交变换的基本思想是轴保持互相垂直,而且不进行缩放变换。

平移、旋转和镜像是仅有的正交变换。长度、角度、面积和体积都保持不变。(尽管如此,但因为镜像变换被认为是正交变换,所以一定要密切注意角度、面积和体积的准确定义)。

正交矩阵的行列式为1或者负1,所有正交矩阵都是仿射和可逆的。

刚体变换

刚体变换只改变物体的位置和方向,不包括形状。所有长度、角度、面积和体积都不变。平移和旋转是仅有的刚体变换,镜像并不被认为是刚体变换。刚体变换也被称作正规变换,所有刚体变换都是正交、等角、可逆和仿射的,某些刚体变换旋转矩阵的行列式为1。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgfwxf.html