笔记:《机器学习训练秘籍》——吴恩达deeplearningai微信公众号推送文章 (2)

-出错的这些样本中,观察其中某一类的比例(如果识别猫的系统,将狗误认为猫,而狗在这些误分类的样本中的比例),如果比例较小(eg.5%)有可能就为该项目的上限,不用在意,因为即使针对狗进行特定的改进,可能也只是会对总识别率提升一点点;如果比例较大,进行改进后就可以显著增加识别率

-误差分析并不会产生一个明确的数学公式来告诉你什么任务的优先级最高。你还需要考虑在不同类别上的预期进展以及解决每个类别所需的工作量。

-作者十分强调优先级问题,看来是看过太多的人做无用功了,他在视频中就经常提到:去一家公司参观,团队花6个月来排查解决的一个问题,他一眼就看出是哪个参数的问题。

---恢复内容结束---

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwfpgf.html