基于SCADA数据驱动的风电机组部件故障预警 (2)

基于SCADA数据驱动的风电机组部件故障预警

式中: k通过统计小概率事件确定, 通过设置k和α对数据进行异常判断, 当x t 满足公式(2) 时, 可以判断当前数据为正常值, 否则为异常进行滤除。 选取k=3和α=0.3对功率数据进行处理, 滤除结果如图2所示。

基于SCADA数据驱动的风电机组部件故障预警

图2 风电机组功率数据预处理

2.2 神经网络输入参数选择
对于风电场的SCADA数据, 神经网络选取输入参数, 大多通过主观经验判断或者参数之间的相关性来决定。 由于风电场SCADA参数之间存在相关性, 使用参数相关性选取神经网络输入参数的方法, 当选择输入参数存在高度相关时, 会造成参数的重复使用和数据冗余的问题。 而通过主观经验法选择神经网络输入参数, 由于影响风机部件的参数比较多, 存在选择参数不准确, 导致神经网络效率低, 选择参数过少, 精度不够等问题。我们采取逐步回归 [10-11] 解决这一问题, 逐步回归分析具体步骤如下所示:
第一步: 输入SCADA参数样本X(m,n), 有n个参数x 1 ,x 2 ,x 3 ,…,x n , 所有参数的维度为m。
第二步: 故障预警部件参数设为x n 计算所有参数的平均值ix 、 离均差平方和s ii 、 协方差矩阵S=(s ij ) n×n\' 和相关系数矩阵R=(r ij ) n×n\' 。

基于SCADA数据驱动的风电机组部件故障预警

其中i,j=1,2,3,…,n-1,n。
第三步: 判断可选入参数个数是否大于2, 选入参数数量当大于2继续下一步, 否则结束。
第四步: 计算各参数的方差贡献, 以l(l≥1) 步为例, 计算偏回归平方和V l p 。

基于SCADA数据驱动的风电机组部件故障预警

第五步: 选入参数的显著性检验。 检验时, 先选定信度a, 查表得到F a , 挑选未入选的模型中方差贡献最大的参数,计算:

基于SCADA数据驱动的风电机组部件故障预警

若F 1 >F a , 说明该参数对y作用显著, 应该选入参数, 同时对相关系数矩阵R做变换, 否则结束。
第六步: 判断选入参数的数量是否大于2, 当数量大于2则继续下一步, 否则执行第四步。
第七步: 做剔除参数的显著性检验。 挑选入选模型中方差贡献最小的变量, 计算:

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwsssy.html