解剖Twitter:Twitter系统架构设计分析【转】 (9)

例如,从Mongrel到MemCached之间,需要一个数据传输通道。或者严格地说,需要一个client library communicating to the memcached server。Twitter的工程师们,先用Ruby实现了一个通道。后来又用C实现了一个更快的通道。随后,不断地改进细节,不断地提升数据传输的效 率。这一系列的改进,使Twitter的运行速度,从原先不设缓存时,每秒钟处理3.23个请求,到现在每秒处理139.03个请求,参见Figure 11。这个数据通道,现在定名为libmemcached,是开源项目 [38]。

解剖Twitter:Twitter系统架构设计分析【转】

Figure 11. Evolving from a Ruby memcached client to a C client with optimised hashing. These changes increases Twitter performance from 3.23 requests per second without caching, to 139.03 requests per second nowadays [14].
Courtesy 

又例如,Twitter系统中用消息队列来传递控制信号。这些控制信号,从插入队列,到被删除,生命周期很短。短暂的生命周期,意味着消息队列的垃 圾回收(Garbage Collection)的效率,会严重影响整个系统的效率。因此,改进垃圾回收的机制,不断提高效率,成为不可避免的问题。Twitter使用的消息队 列,原先不是Kestrel,而是用Ruby编写的一个简单的队列工具。但是如果继续沿用Ruby这种语言,性能优化的空间不大。Ruby的优点是集成了 很多功能,从而大大减少了开发过程中编写程序的工作量。但是优点也同时是缺点,集成的功能太多,拖累也就多,牵一发而动全身,造成优化困难。

Twitter工程师戏言,”Ruby抗拒优化”,(“Ruby is optimization resistant”, by Evan Weaver [14])。几经尝试以后,Twitter的工程师们最终放弃了Ruby语言,改用Scala语言,自行实现了一个队列,命名为Kestrel [39]。

改换语言的主要动机是,Scala运行在JVM之上,因此优化Garbage Collection性能的手段丰富。Figure 12. 显示了使用Kestrel以后,垃圾回收的滞后,在平时只有2ms,最高不超过4ms。高峰时段,平均滞后5ms,最高不超过35ms。

解剖Twitter:Twitter系统架构设计分析【转】

Figure 12. The latency of Twitter Kestrel garbage collection [14].
Courtesy 

RubyOnRails逐渐淡出Twitter,看来这是大势所趋。最后一步,也是最高潮的一步,可能是替换Mongrel。事实 上,Twitter所谓“API Server”,很可能是他们替换Mongrel的前奏。

Twitter的Evan Weaver说,“API Server”的运行效率,比Apache+Mongrel组合的速度快4倍。所谓Apache+Mongrel组合,是RubyOnRails的一种实 现方式。Apache+Mongrel组合,每秒能够处理139个请求,参见Figure 11,而“API Server” 每秒钟能够处理大约550个请求 [16]。换句话说,使用Apache+Mongrel组合,优点是降低了工程师们写程序的负担,但是代价是系统性能降低了4倍,换句话说,用户平均等待 的时间延长了4倍。

活着通常不难,活得精彩永远很难。得过不且过,这是一种精神。

Reference,
[14] Improving running component of Twitter.
(?path=http://www.likecs.com/qcon-london-2009/slides/EvanWeaver_ImprovingRunningComponentsAtTwitter.pdf)
[16] Updating Twitter without service disruptions.
()
[38] Open source project, libmemcached, by Twitter.
()
[39] Open source project, Kestrel Messaging Queue, by Twitter.
()

【9】结语

这个系列讨论了Twitter架构设计,尤其是cache的应用,数据流与控制流的组织等等独特之处。把它们与抗洪抢险中,蓄洪,引流,渠道三种手 段相对比,便于加深理解。同时参考实际运行的结果,验证这样的设计是否能够应付实际运行中遇到的压力。

解剖一个现实网站的架构,有一些难度。主要体现在相关资料散落各处,而且各个资料的视点不同,覆盖面也不全。更严重的问题是,这些资料不是学术论 文,质量良莠不齐,而且一些文章或多或少地存在缺失,甚至错误。

单纯把这些资料罗列在一起,并不能满足全景式的解剖的需要。整理这些资料的过程,很像是侦探办案。福尔摩斯探案的方法,是证据加推理。

1. 如果观察到证据O1,而造成O1出现的原因,有可能是R1,也有可能是R2或者R3。究竟哪一个原因,才是真正的原因,需要进一步收集更多的证据,例如 O2,O3。如果造成O2 出现的可能的原因是R2和R4,造成O3 出现的可能原因是R3和R5。把所有证据O1 O2 O3,综合起来考虑,可能性最大的原因必然是(R1,R2,R3), (R2,R4), (R3,R5) 的交集,也就是R2。这是反绎推理的过程。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwysxx.html