机器学习--线性回归与梯度算法 (2)

常见的最优化算法有梯度下降法(Gradient Descent)、牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)、共轭梯度法(Conjugate Gradient)、 启发式优化方法等,本文详细介绍梯度算法。

明确下我们现在的目标:我们需要通过梯度算法求出---当在H取得最小的情况下,W0 ,W1 ,W2 ,W3 , ....... ,Wm的值,从而写出回归方程。

梯度算法分为梯度上升算法 和 梯度下降算法。梯度下降算法的基本思想是:要找到某函数的最小值,最好的方法是沿着该函数的梯度方向探寻,梯度上升则相反。对于一个有两个未知数x,y的函数f(x,y),梯度表示为:

 

机器学习--线性回归与梯度算法

对于Z = f(x,y),使用梯度下降算法的意味着 沿X轴方向移动

机器学习--线性回归与梯度算法

,沿Y的方向移动

机器学习--线性回归与梯度算法

,函数f(x,y)必须要在待计算的点上有定义并且可微。

可以通俗理解为:

梯度实际上是函数值变化最快的方向。比如说,你站在一个山上,梯度所指示的方向是高度变化最快的方向。你沿着这个方向走,能最快的改变(增加或是减小)你所在位置的高度,但是如果你乱走,可能走半天所在位置高度也没有变化多少。也就是说,如果你一直沿着梯度走,你就能最快的到达山的某个顶峰或低谷。所以实际上,梯度算法是用来搜索局部极小值或极大值的,它是实际应用中一种非常高效,高速且可靠的方法。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zydxyx.html