Go加密算法总结 (3)

学过算法的朋友都知道,计算机中的算法其实就是数学运算。所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学知识。我们就从数学知识开始讲解。

必备数学知识

RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几个概念即可

素数

素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了。

互质数

百度百科上的解释是:公因数只有1的两个数,叫做互质数。;维基百科上的解释是:互质,又称互素。若N个整数的最大公因子是1,则称这N个整数互质。

常见的互质数判断方法主要有以下几种:

/* 1、两个不同的质数一定是互质数。例如,2与7、13与19。 2、一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。 3、相邻的两个自然数是互质数。如 15与 16。 4、相邻的两个奇数是互质数。如 49与 51。 5、较大数是质数的两个数是互质数。如97与88。 6、小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。 7、2和任何奇数是互质数。例如2和87。 8、1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。 9、辗转相除法。 */ 指数运算 /*  指数运算又称乘方计算,计算结果称为幂。nm指将n自乘m次。把nm看作乘方的结果,叫做”n的m次幂”或”n的m次方”。其中,n称为“底数”,m称为“指数”。 */ 模运算 /* 模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个正整数,若得相同余数,则二整数同余。   两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作: a ≡ b (mod m);读作:a同余于b模m,或者,a与b关于模m同余。例如:26 ≡ 14 (mod 12)。 */ RSA加密算法 公钥和密钥的产生

假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥:

/* 1、随意选择两个大的质数p和q,p不等于q,计算N=pq。 2、根据欧拉函数,求得r = (p-1)(q-1) 3、选择一个小于 r 的整数 e,求得 e 关于模 r 的模反元素,命名为d。(模反元素存在,当且仅当e与r互质) 4、将 p 和 q 的记录销毁。 (N,e)是公钥,(N,d)是私钥。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。 */ 加密消息

假设Bob想给Alice送一个消息m,他知道Alice产生的N和e。他使用起先与Alice约好的格式将m转换为一个小于N的整数n,比如他可以将每一个字转换为这个字的Unicode码,然后将这些数字连在一起组成一个数字。假如他的信息非常长的话,他可以将这个信息分为几段,然后将每一段转换为n。用下面这个公式他可以将n加密为c:

  ne ≡ c (mod N)

计算c并不复杂。Bob算出c后就可以将它传递给Alice。

解密消息

Alice得到Bob的消息c后就可以利用她的密钥d来解码。她可以用以下这个公式来将c转换为n:

  cd ≡ n (mod N)

得到n后,她可以将原来的信息m重新复原。

解码的原理是

  cd ≡ n e·d(mod N)

以及ed ≡ 1 (mod p-1)和ed ≡ 1 (mod q-1)。由费马小定理可证明(因为p和q是质数)

  n e·d ≡ n (mod p)  和  n e·d ≡ n (mod q)

这说明(因为p和q是不同的质数,所以p和q互质)

  n e·d ≡ n (mod pq)

签名消息

RSA也可以用来为一个消息署名。假如甲想给乙传递一个署名的消息的话,那么她可以为她的消息计算一个散列值(Message digest),然后用她的密钥(private key)加密这个散列值并将这个“署名”加在消息的后面。这个消息只有用她的公钥才能被解密。乙获得这个消息后可以用甲的公钥解密这个散列值,然后将这个数据与他自己为这个消息计算的散列值相比较。假如两者相符的话,那么他就可以知道发信人持有甲的密钥,以及这个消息在传播路径上没有被篡改过。

Golang加密解密之RSA 概要

这是一个非对称加密算法,一般通过公钥加密,私钥解密。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zyydpp.html