深入理解:Linear Regression及其正则方法 (2)

  对于上述三个缺陷,人们就提出来Elastic Net.其思想还是建立在L1正则上面的,其目的是在保证Lasso的优良特性的情况下,克服其缺项.Elastic Net既能select variable同时也能shrankage.他能同时选择相关度很高的组变量.论文上的一个比喻很形象:Elastic Net像一个可伸缩的渔网,可以网住所有的大鱼.这个算法的优化也有一些门道,传统的思路其实比较容易想到对于一个加了L1和L2正则的均方误差损失函数,我们先固定λ2(L2正则项的系数)对所有的权重进行压缩,完成L2正则,然后用Lasso进行压缩,进行特征选择.但是这种方法有一个很致命的缺陷就是很慢,相当于要进行两次正则计算非常耗时.同时这种两次压缩并没有根本减少方差同时还引入了额外的偏差所以这种方法也叫作naive Elastic Net.后来为了优化这个算法又提出了最终我们目前使用的Elastic Net,其思想也很简单,但是很巧,就是将L2正则项同均方误差项进行合并,这样L2正则这一步就直接去掉相当于变成一个权重系数的缩减,因此这个新的表达式就可以近似看成一个Lasso Regression了.这样整个算法的计算时间跟Lasso一样,同时也避免了两次shrankage带来的额外偏差.当然整个算法具体实现细节需要大量的数学证明.这里就一一略过,需要深入了解的可以看看论文,写的很详细.

  这里我对Linear Regression及其正则的实际使用发展历史及每个算法要解决的问题进行了一一阐述,可能有些粗糙.但是相信大家对于整个算法的发展过程有了了解后也明白什么样的情况使用什么样的算法,以及各个算法的局限性.下面我来做几个简单的实验demo来看看上面几个算法的效果,主要使用sklearn.

  

深入理解:Linear Regression及其正则方法

  这里的数据集直接使用的是sklearn自带的boston房价数据集,其中特征较少,效果可能没那么明显,但整体来看还是有明显区别,其中lr是LinearRegression模型,其训练模型的系数差异很大,系数的大小代表个特征的权重,特征的强弱关系非常明显.有些特征很强有些很弱.接下来是rd表示Ridge模型(我把惩罚因子alpha稍微调大了一点效果更加明显),可以看出来相比如lr模型其系数都不同程度的进行了压缩,如果我们把alpha继续调大效果会更加明显,当然我这里没有管最终的预测结果,只是让大家感受一下这几个正则的效果.接着看ls表示Lasso模型相比如lr模型其及进行的shrankage同时也进行了变量选择.因为有四个特征的系数变为了0.最后我们看Elastic Net模型相比如Lasso模型其压缩幅度没有那么大,因此只有三个变量被压缩为0.这里看Elastic Net可能效果很差,但是不代表Elastic Net没有用,使用时我们一定要搞清楚自己的数据集的特点,每种数据集主要面对的是什么问题,才能找到最合适的方法.

  通过上面的一个简单例子我们可以感受一下各种正则压缩的效果,当然如果纯粹从性能角度来看,我们需要用大量不同数据集来测试,如果大家有兴趣可以找一些数据集来测试一下各种算法的具体效果.这里对于Linear regresion及其正则方法有了一个全面的介绍,也给出了各种算法适合的条件和个算法解决的问题.实际问题中如何使用这些算法,还需要根据具体数据具体问题来分析选取.希望这篇简短的介绍能给大家对Linear regression更深刻的认识.

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zyypgd.html