企业在建设自己的DMP库的过程中,常常会从常规的人口属性等准静态类标签,以及像消费能力等从自身业务积累或三方合作得到的通用类标签入手。这些标签往往是泛业务的,针对具体业务而言,很多时候会需要用户画像标签更贴近业务,比如电商业务场景下的母婴用户、电子产品发烧友、化妆品品牌喜好用户等。这些标签和用户的发掘,需要对用户的行为进行深度分析来获取,这个工作便可以借助用户行为分析平台的能力,如基于用户行为模式和用户业务属性对用户进行分群分析和比较,来发现和挖掘有价值的用户标签。
另一方面,用户画像的数据,也可以和分析平台进行整合和集成,提升平台各分析模型对不同用户群的洞见能力,让分析和指标的比较更有针对性,提升数据对业务的促进能力。
六、埋点及分析平台和 A/B 试验平台如何更好的互相促进?
A/B测试产品是通过提供专业高效的试验平台,帮助产品进行产品决策的验证和分析。常规使用流程如下:
接入 SDK -> 创建试验版本 -> 设置变量、以及优化指标 -> 调节试验流量 -> 运行试验 -> 实时监控数据进行效果评估 -> 正式发布
试验平台和分析平台的SDK在很多功能上是重合的,在SDK实现上可以整合,减少业务应用接入太多SDK的负担。
在数据采集、建模、分析层面,分析平台可以作为 A/B 试验平台后端数据的承载,优化指标的效果评估就能覆盖用户的全量行为,无需业务及开发人员维护多个工具带来的重复埋点定义和开发工作。另外,在分析平台积累的很多分析模型和指标,在A/B试验平台直接可以选取使用,无需在试验平台再进行设置,除减少业务人员工作外,还能保证统计口径的一致。
反过来,A/B试验平台的一些对比试验,以及特定灰度发布的用户群,也能整合到分析平台,通过分群分析能力,将这些群体应用到各个分析模型进行针对性的分析,甚至试验结束后,也能持续对这些用户进行追踪和分析,更好的洞察用户。
七、如何打通产品多端的埋点数据?
这是个归因的问题,一般提到账号打通,就会有归因的讨论。
现在的分析产品在一般情况下,移动端会通过SDK生成唯一ID来标识用户/设备。移动化发展早期,很多采集工具用过 mac address、IDFA、android_id、IMEI等从移动操作系统可以获取的设备软硬件信息来标识设备,但随着操作系统的发展,很多信息获取接口要么被封禁,要么已经失去了精准性。反倒是一开始就通过自己生成的ID来标识用户的工具,受到的影响不大,基本保持了用户/设备标识的稳定。
但这种方式存在一个问题,当用户卸载、重装或者刷机后,ID信息会丢失,导致生成新的用户/设备ID。
我们采用过ID Mapping的技术来做过ID的打通:对每个用户生成一个虚拟ID,对同一个用户的多个设备和帐号进行映射,并绑定起来。
l 可以通过操作系统提供的一些稳定性稍差,但短时间还比较稳定的指标,如iOS的IDFA,来做mapping。
l 借助分析产品的应用覆盖率,如用户是应用A和B的用户,卸载并重新安装B应用后,可以通过应用A的ID修复应用B的。
l 通过引入产品用户账号体系来做绑定,这种方式稳定性最强,但非登录匿名用户的问题不好解决。
l 通过IP、Wi-Fi信息、机器型号、甚至地理位置进行mapping,这种方式需要用户授权更多数据获取权限,虽然是近似匹配,但当信息足够多且发散(信息熵足够大)时,也可以起到统一标识的作用。
通过这个虚拟ID实质上就打通了产品的多端数据。ID Mapping体系的建设工作量不小,Mapping后用户标识如果需要发生调整,在基于事件的分析产品上需要对老数据进行重写,比较复杂。所以对于一些强账号体系的产品,可以退化到只用用户账号来做关联,只有非登录匿名用户才用设备ID来标识,这往往是性价比比较高的方案。
推广渠道归因就方便了。