形态学梯度(Morphological Gradient)为膨胀图与腐蚀图之差,数学表达式例如以下:
对二值图像进行这一操作能够将团块(blob)的边缘突出出来。我们能够用形态学梯度来保留物体的边缘轮廓。例如以下所看到的:
实际素材效果图:
顶帽运算(Top Hat)又经常被译为”礼帽“运算。为原图像与上文刚刚介绍的“开运算“的结果图之差,数学表达式例如以下:
由于开运算带来的结果是放大了裂缝或者局部低亮度的区域。因此,从原图中减去开运算后的图,得到的效果图突出了比原图轮廓周围的区域更明亮的区域,且这一操作和选择的核的大小相关。
顶帽运算往往用来分离比邻近点亮一些的斑块。
当一幅图像具有大幅的背景的时候,而微小物品比較有规律的情况下,能够使用顶帽运算进行背景提取。
例如以下所看到的:
素材效果图:
黑帽(Black Hat)运算为”闭运算“的结果图与原图像之差。数学表达式为:
黑帽运算后的效果图突出了比原图轮廓周围的区域更暗的区域。且这一操作和选择的核的大小相关。
所以。黑帽运算用来分离比邻近点暗一些的斑块。非常完美的轮廓效果图:
实际素材效果图: