在许多情况下,一个用户需要了解待分析的数据,尽管这并非所要执行的分析任务 的核心内容。以统计数据集中无效记录数目的任务为例,如果发现无效记录的比例 相当高,那么就需要认真思考为何存在如此多无效记录。是所采用的检测程序存在 缺陷,还是数据集质量确实很低,包含大量无效记录?如果确定是数据集的质量问 题,则可能需要扩大数据集的规模,以增大有效记录的比例,从而进行有意义的 分析。
计数器是一种收集作业统计信息的有效手段,用于质量控制或应用级统计。计数器 还可辅助诊断系统故障。如果需要将日志信息传输到map或reduce任务,更好的 方法通常是尝试传输计数器值以监测某一特定事件是否发生。对于大型分布式作业 而言,使用计数器更为方便。首先,获取计数器值比输出日志更方便,其次,根据 计数器值统计特定事件的发生次数要比分析一堆日志文件容易得多。
--------------------------------------分割线 --------------------------------------
Ubuntu 12.10 +Hadoop 1.2.1版本集群配置
--------------------------------------分割线 --------------------------------------
2 、内置计数器
Hadoop为每个作业维护若干内置计数器, 以描述该作业的各项指标。例如,某些计数器记录已处理的字节数和记录数,使用户可监控已处理的输入数据量和已产生的输出数据量,并以此对 job 做适当的优化。
14/06/08 15:13:35 INFO mapreduce.Job: Counters: 46
File System Counters
FILE: Number of bytes read=159
FILE: Number of bytes written=159447
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=198
HDFS: Number of bytes written=35
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Rack-local map tasks=1
Total time spent by all maps in occupied slots (ms)=3896
Total time spent by all reduces in occupied slots (ms)=9006
Map-Reduce Framework
Map input records=3
Map output records=12
Map output bytes=129
Map output materialized bytes=159
Input split bytes=117
Combine input records=0
Combine output records=0
Reduce input groups=4
Reduce shuffle bytes=159
Reduce input records=12
Reduce output records=4
Spilled Records=24
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=13
CPU time spent (ms)=3830
Physical memory (bytes) snapshot=537718784
Virtual memory (bytes) snapshot=7365263360
Total committed heap usage (bytes)=2022309888
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=81
File Output Format Counters
Bytes Written=35
计数器由其关联任务维护,并定期传到tasktracker,再由tasktracker传给 jobtracker.因此,计数器能够被全局地聚集。详见第 hadoop 权威指南第170页的“进度和状态的更新”小节。与其他计数器(包括用户定义的计数器)不同,内置的作业计数器实际上 由jobtracker维护,不必在整个网络中发送。
一个任务的计数器值每次都是完整传输的,而非自上次传输之后再继续数未完成的传输,以避免由于消息丢失而引发的错误。另外,如果一个任务在作业执行期间失 败,则相关计数器值会减小。仅当一个作业执行成功之后,计数器的值才是完整可 靠的。
3、 用户定义的Java计数器
MapReduce允许用户编写程序来定义计数器,计数器的值可在mapper或reducer 中增加。多个计数器由一个Java枚举(enum)类型来定义,以便对计数器分组。一 个作业可以定义的枚举类型数量不限,各个枚举类型所包含的字段数量也不限。枚 举类型的名称即为组的名称,枚举类型的字段就是计数器名称。计数器是全局的。 换言之,MapReduce框架将跨所有map和reduce聚集这些计数器,并在作业结束 时产生一个最终结果。
Note1: 需要说明的是,不同的 hadoop 版本定义的方式会有些许差异。
(1)在0.20.x版本中使用counter很简单,直接定义即可,如无此counter,hadoop会自动添加此counter.
Counter ct = context.getCounter("INPUT_WORDS", "count");
ct.increment(1);
(2)在0.19.x版本中,需要定义enum
enum MyCounter {INPUT_WORDS };
reporter.incrCounter(MyCounter.INPUT_WORDS, 1);
RunningJob job = JobClient.runJob(conf);
Counters c = job.getCounters();
long cnt = c.getCounter(MyCounter.INPUT_WORDS);