template<class T>
void BSTree<T>::insert(T key)
{
BSTNode<T> *z = NULL;
// 如果新建结点失败,则返回
if((z=new BSTNode<T>(key,NULL,NULL,NULL))==NULL)
return;
insert(root,z);
}
删除
template<class T>
BSTNode<T>* BSTree<T>::remove(BSTNode<T>* &tree, BSTNode<T> *z)
{
BSTNode<T> *x = NULL;
BSTNode<T> *y = NULL;
if(z->left==NULL || z->right==NULL)
y = z;
else
y = successor(z);
if(y->left!=NULL)
x = y->left;
else
x = y->right;
if(x!=NULL)
x->parent = y->parent;
if(y->parent==NULL)
tree = x;
else if(y==y->parent->left)
y->parent->left = x;
else
y->parent->right = x;
if(y!=z)
z->key = y->key;
return y;
}
template<class T>
void BSTree<T>::remove(T key)
{
BSTNode<T> *z, *node;
if((z=search(root,key))!=NULL)
if((node=remove(root,z))!=NULL)
delete node;
}
打印
template<class T>
void BSTree<T>::print(BSTNode<T> *tree, T key, int direction)
{
if(tree!=NULL)
{
if(direction==0)
cout<<setw(2)<<tree->key<<"is root"<<endl;
else
cout<<setw(2)<<tree->key<<"is"<<setw(2)<<key<<"'s"<<setw(12)<<(direction==1 ? "right child":"left child")<<endl;
print(tree->left,tree->key,-1);
print(tree->right,tree->key,1);
}
}
template<class T>
void BSTree<T>::print()
{
if(root!=NULL)
print(root,root->key,0);
}
销毁
template<class T>
void BSTree<T>::destroy(BSTNode<T> *&tree)
{
if(tree==NULL)
return ;
if(tree->left!=NULL)
return destroy(tree->left);
if(tree->right!=NULL)
return destroy(tree->right);
delete tree;
tree=NULL;
}
template<class T>
void BSTree<T>::destroy()
{
destroy(root);
}
二叉查找树完整实现:BSTree.h
#ifndef BINARY_SEARCH_TREE
#define BINARY_SEARCH_TREE
#include<iomanip>
#include<iostream>
using namespace std;
template<class T>
class BSTNode
{
public:
T key; // 关键字(键值)
BSTNode *left; // 左孩子
BSTNode *right; // 右孩子
BSTNode *parent; // 父结点
BSTNode(T value, BSTNode *p, BSTNode *l, BSTNode *r):
key(value),parent(p),left(l),right(r) {}
};
template<class T>
class BSTree
{
private:
BSTNode<T> *root; // 根结点
public:
BSTree() {};
~BSTree() {};
// 前序遍历
void preOrder();
// 中序遍历
void inOrder();
// 后序遍历
void postOrder();
// (递归实现)查找二叉树中键值为key的结点
BSTNode<T>* search(T key);
// (非递归实现) 查找二叉树中键值为key的结点
BSTNode<T>* iterativeSearch(T key);
// 查找最小结点(返回键值)
T minimum();
// 查找最大结点(返回键值)
T maximum();
// 找结点(x)的后继结点。即查找二叉树中键值大于该结点的最小结点
BSTNode<T>* successor(BSTNode<T> *x);
// 找结点(x)的前驱结点。即查找二叉树中键值小于该结点的最大结点
BSTNode<T>* predecessor(BSTNode<T> *x);
// 将键值为key的结点插入到二叉树中
void insert(T key);
// 删除键值为key的结点
void remove(T key);
// 销毁二叉树
void destroy();
// 打印二叉树
void print();
private:
// 重载函数,提供内部接口
// 前序遍历
void preOrder(BSTNode<T> *tree) const;
// 中序遍历
void inOrder(BSTNode<T> *tree) const;
// 后序遍历
void postOrder(BSTNode<T> *tree) const;
// (递归实现)查找二叉树中键值为key的结点
BSTNode<T>* search(BSTNode<T> *x, T key) const;
// (非递归实现) 查找二叉树中键值为key的结点
BSTNode<T>* iterativeSearch(BSTNode<T> *x, T key) const;
// 查找最小结点(返回键值)
BSTNode<T>* minimum(BSTNode<T> *tree);
// 查找最大结点(返回键值)
BSTNode<T>* maximum(BSTNode<T> *tree);
// 将结点z插入到二叉树tree中
void insert(BSTNode<T>* &tree, BSTNode<T> *z);
// 删除二叉树中的结点z,并返回该结点
BSTNode<T>* remove(BSTNode<T>* &tree, BSTNode<T> *z);
// 销毁二叉树
void destroy(BSTNode<T>* &tree);
// 打印二叉树
void print(BSTNode<T>* &tree, T key, int direction);
};