javascript trie前缀树的示例(3)

文中Trie树都是拿字符串举例的,其实它本身对key的适宜性是有严格要求的,如果key是浮点数的话,就可能导致整个Trie树巨长无比,节点可读性也非常差,这种情况下是不适宜用Trie树来保存数据的;而二叉搜索树就不存在这个问题。

Trie树与Hash表

考虑一下Hash冲突的问题。Hash表通常我们说它的复杂度是O(1),其实严格说起来这是接近完美的Hash表的复杂度,另外还需要考虑到hash函数本身需要遍历搜索字符串,复杂度是O(m)。在不同键被映射到“同一个位置”(考虑closed hashing,这“同一个位置”可以由一个普通链表来取代)的时候,需要进行查找的复杂度取决于这“同一个位置”下节点的数目,因此,在最坏情况下,Hash表也是可以成为一张单向链表的。

Trie树可以比较方便地按照key的字母序来排序(整棵树先序遍历一次就好了),这跟绝大多数Hash表是不同的(Hash表一般对于不同的key来说是无序的)。

在较理想的情况下,Hash表可以以O(1)的速度迅速命中目标,如果这张表非常大,需要放到磁盘上的话,Hash表的查找访问在理想情况下只需要一次即可;但是Trie树访问磁盘的数目需要等于节点深度。

很多时候Trie树比Hash表需要更多的空间,我们考虑这种一个节点存放一个字符的情况的话,在保存一个字符串的时候,没有办法把它保存成一个单独的块。Trie树的节点压缩可以明显缓解这个问题,后面会讲到。

Trie树的改进

按位Trie树(Bitwise Trie)

原理上和普通Trie树差不多,只不过普通Trie树存储的最小单位是字符,但是Bitwise Trie存放的是位而已。位数据的存取由CPU指令一次直接实现,对于二进制数据,它理论上要比普通Trie树快。

节点压缩。

分支压缩:对于稳定的Trie树,基本上都是查找和读取操作,完全可以把一些分支进行压缩。例如,前图中最右侧分支的inn可以直接压缩成一个节点“inn”,而不需要作为一棵常规的子树存在。Radix树就是根据这个原理来解决Trie树过深问题的。

节点映射表:这种方式也是在Trie树的节点可能已经几乎完全确定的情况下采用的,针对Trie树中节点的每一个状态,如果状态总数重复很多的话,通过一个元素为数字的多维数组(比如Triple Array Trie)来表示,这样存储Trie树本身的空间开销会小一些,虽说引入了一张额外的映射表。

前缀树的应用

前缀树还是很好理解,它的应用也是非常广的。

(1)字符串的快速检索

字典树的查询时间复杂度是O(logL),L是字符串的长度。所以效率还是比较高的。字典树的效率比hash表高。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://www.heiqu.com/110.html