块设备驱动的open()函数和字符设备驱动的open()和类似,都以相关inode和file结构体指针作为参数,当一个结点引用一个块设备时,inode->i_bdev->bd_disk包含一个指向关联gendisk的结构体的指针.因此类似字符设备,可将gendisk的private_data赋给file的private_data,private_data同样最好是指向描述该设备的设备结构体xxx_dev的指针.如下面的代码:
static int xxx_open(struct inode* inode, struct file* file){
struct xxx_dev* dev = inode->i_bdev->db_disk->private_data;
file->private_data = dev;
...
return 0;
}
3.块设备驱动的ioctl
块设备可以包含一个ioctl()函数,以提供对该设备的IO控制,实际上搞成的块设备层代码处理了绝大多数ioctl(),因此具体的块设备驱动中,通常不在需要实现很多ioctl()命令.下面的代码中只实现一个命令HDIO_GETGEO,用于获得磁盘的几何信息(geometry,指CHS,即Cylinder, Head, Sector/Track).
static int xxx_ioctl(struct inode* inode, struct file* file,\
unsigned int cmd, unsigned long arg){
long size;
struct hd_geometry geo;
struct xxx_dev* dev = file->private_data;
switch(cmd){
case HDIO_GETGEO:
size = dev->size * (hardsect_size / KERNEL_SECTOR_SIZE);
geo.cylinders = (size & ~0x3f) >> 6;
geo.heads = 4;
geo.sectors = 16;
if(copy_to_user((void __user*)arg, &geo, sizeof(geo)){
return -EFAULT;
}
return 0;
}
return -ENOTTY;//未知命令
}
4.块设备驱动的I/O请求
☆ 使用请求队列
块设备驱动请求函数的原型为:
void request(request_queue_t* q);
这个函数不能由驱动自己调用,只有当内核认为是时候让驱动处理对设备的读写等操作时,它才会调用这个函数.请求函数可以在没有完成请求队列中的所有请求的情况下返回,甚至它一个请求不完成都可以返回.但对大部分设备而言,一般会在请求函数中处理完所有请求后才返回.
static void xxx_request(request_queue_t* q){
struct request* req;
//elv_next_request()用于获取队列中第一个未完成的请求
//end_request()会将请求从请求队列中剥离
while((req = elv_next_request(q)) != NULL){
struct xxx_dev* dev = req->rq_disk->private_data;
if(!blk_fs_request(req)){//如果不是文件系统请求,直接清除,调用end_request().
printk(KERN_NOTICE "Skip non-fs request\n");
end_request(req, 0);//通知请求处理失败.第二个参数0代表请求失败.
continue;
}
xxx_transfer(dev, req->sector, req->current_nr_sectors, req->buffer,\
rq_data_dir(req));//处理这个请求.
end_request(req, 1);//通知成功完成这个请求.1,表示请求成功.
}
}
static void xxx_transfer(struct xxx_dev* dev, unsigned long sector,\
unsigned long nsect, char* buffer, int write){
unsigned long offset = sector * KERNEL_SECTOR_SIZE;
unsigned long nbytes = nsect * KERNEL_SECTOR_SIZE;
if((offset + nbytes) > dev->size){
printk(KERN_NOTICE "Beyond-end write (%ld %ld)\n", offset, nbytes);
return ;
}
if(write)
write_dev(offset, buffer, nbytes);//向设备写nbytes个字节的数据.
else
read_dev(offset, buffer, nbytes);//从设备读取nbytes个字节的数据.
}
下面是end_that_request_first()的源码和分析
//end_request()源码清单
void end_request(struct request* req, int uptodate){
//当设备完成一个IO请求的部分或全部扇区传输后,必须告知块设备层.end_that_request_first
//原型为:int end_that_request_first(struct request* req, int success, int count);
//此函数高数块设备层,已经完成count各扇区的传送.返回表示所有扇区传送完毕.
if(!end_that_request_first(req, uptodate, req->hard_cur_sectors)){
//add_disk_randomness()作用是使用块IO请求的定时来给系统的随机数池贡献熵,它不影响
//块设备,但仅当磁盘的操作时间是真正随机的时候,才调用它.
add_disk_randomness(req->rq_disk);
blkdev_dequeue_request(req);//清除此请求.
end_that_request_last(req);//通知等待此请求的对象,此请求已经完成
}
}
下面是一个更复杂的请求函数,分别遍历了request,bio,以及bio中的segment
//请求函数遍历请求,bio和段
static void xxx_full_request(request_queue_t* q){
struct request* req;
int sectors_xferred;
struct xxx_dev* dev = q->queuedata;
//XXX 遍历每个请求
while((req = elv_next_request(q)) != NULL){
if(!blk_fs_request(req)){
printk(KERN_NOTICE "Skip non-fs request\n");
end_request(req, 0);
continue;
}
sectors_xferred = xxx_xfer_reqeust(dev, req);
if(!end_that_request_first(req, 1, sectors_xferred)){
blkdev_dequeue_reqeust(req);
end_that_request_last(req);
}
}
}
//XXX 请求处理
static int xxx_xfer_request(struct xxx_dev* dev, struct reqeust* req){
struct bio* bio;
int nsect = 0;
//遍历请求中的每个bio
rq_for_each_bio(bio, req){
xxx_xfer_bio(dev, bio);
nsect += bio->bi_size / KERNEL_SECTOR_SIZE;
}
return nsect;
}
//XXX bio处理
static int xxx_xfer_bio(struct xxx_dev* dev, struct bio* bio){
int i;
struct bio_vec* bvec;
sector_t sector = bio->bi_sector;
//遍历每一个segment
bio_for_each_segment(bvec, bio, i){
char* buffer = __bio_kmap_atomic(bio, i, KM_USER0);
xxx_transfer(dev, sector, bio_cur_sectors(bio), buffer,\
bio_data_dir(bio) == WRITE);
sector += bio_cur_sectors(bio);
__bio_kunmap_atomic(bio, KMUSER0);
}
return 0;
}
☆ 不使用请求队