在 Fedora 上搭建 Jupyter 和数据科学环境(3)

XGBoost 是目前可以使用的最先进的回归器和分类器。它并不是 Scikit-learn 的一部分,但是却遵循了 Scikit 的 API。XGBoost 并没有针对 Fedora 的软件包,但可以使用 pip 安装。使用英伟达显卡可以提升 XGBoost 算法的性能,但是这并不能通过 pip 软件包来实现。如果你希望使用这个功能,可以针对 CUDA (LCTT 译注:英伟达开发的并行计算平台)自己进行编译。使用下面这个命令安装 XGBoost:

$ pip3 install xgboost --user

Imbalanced Learn

Imbalanced-learn 是一个解决数据欠采样和过采样问题的工具。比如在反欺诈问题中,欺诈数据相对于正常数据来说数量非常小,这个时候就需要对欺诈数据进行数据增强,从而让预测器能够更好地适应数据集。使用 pip 安装:

$ pip3 install imblearn --user

NLTK

Natural Language toolkit(简称 NLTK)是一个处理人类语言数据的工具,举例来说,它可以被用来开发一个聊天机器人。

SHAP

机器学习算法拥有强大的预测能力,但并不能够很好地解释为什么做出这样或那样的预测。SHAP 可以通过分析训练后的模型来解决这个问题。

Where SHAP fits into the data analysis process

Where SHAP fits into the data analysis process

使用 pip 安装:

$ pip3 install shap --user

Keras

Keras 是一个深度学习和神经网络模型的库,使用 pip 安装:

$ sudo dnf install python3-h5py

$ pip3 install keras --user

TensorFlow

TensorFlow 是一个非常流行的神经网络模型搭建工具,使用 pip 安装:

$ pip3 install tensorflow --user

Photo courtesy of FolsomNatural on Flickr (CC BY-SA 2.0).

via:fedoramagazine

linux

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/11941.html