SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型(2)

将 ssd_mobilenet_v1_pets.config 中 fine_tune_checkpoint 修改为如下格式的路径

fine_tune_checkpoint: "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/models/research/object_detection/ssd_model/ssd_mobilenet/model.ckpt"

使用 train.py 脚本训练模型

注意:脚本可能位于 object_detection/ 或 object_detection/legacy/ 目录下

这里位于 object_detection/legacy/ 目录

python ./object_detection/legacy/train.py --train_dir ./object_detection/legacy/train/ --pipeline_config_path ./object_detection/ssd_model/ssd_mobilenet_v1_pets.config

运行 export_inference_graph.py 脚本将训练出的模型固化成 TensorFlow 的 .pb 模型,其中 trained_checkpoint_prefix 要设置成 model.ckpt-[step],其中 step 要与训练迭代次数相同

python ./object_detection/export_inference_graph.py --input_type image_tensor --pipeline_config_path ./object_detection/ssd_model/ssd_mobilenet_v1_pets.config --trained_checkpoint_prefix ./object_detection/legacy/train/model.ckpt-9000 --output_directory ./object_detection/ssd_model/model/

转换后生成的 .pb 模型位于 object_detection/ssd_model/model/ 目录下

将 pascal_label_map.pbtxt 作为 label 文件

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/11964.html