map法处理大数据问题(2)

在程序中,先读取一个文本文件中随机产生的6W个整数,存到这个bitmap中,然后测试了一下从这个建立好的bitmap中查找100W数据耗时情况(11ms左右),接下来的部分是用户可以手动输入一些整数,程序会自动检索bitmap中是否已存储该数据。

这样就可以解决引入话题中的第一个问题了,把输入的文本数据改为已知的40亿数据就可以了(40亿数据的录入可能需要一会儿,大概1300秒)。

下面给出引入的剩余三个问题的解题思路。

问题2:先建立一个足够大的Bitmap对象,然后依次录入这些数据,如果录入某数据前发现该位已经为1,则该数据重复,依次得到重复的数据即可。

问题3:先建立一个足够大的Bitmap对象,然后依次录入这些数据,从Bitmap开始位置起遍历,如果某位不为0,则表示有该数据,依次输出不为0的位的位序就是排序好的数组(输出太多没意义,可以将输出转换到写入文件,那么新文件中数据就是排序好的)。

问题4:方法1,建立2个足够大的Bitmap对象,依次录入数据,录入前先判断该数据在bitmap1中是否存在(即对应位是否为1),不存在则录入到bitmap1中,存在就录入到bitmap2中;全部录入完后,依次遍历bitmap1中每一位,如果某一位为1但是bitmap2中对应位不为1,则表示该数据只出现过一次,依次输出即可。

方法2,建立一个足够大的Bitmap对象,不过用两位表示一个数据,00表示数据不存在,01数据出现一次,10表示数据出现多次。11呢?一边凉快去吧,不要你了,哈哈。这样依次录入数据时,如果该对应位(其实是两位)为00则改为01,01就改为10,10就不管了。录入完成后,遍历整个bitmap,找到01位就输出。

  好了,常见的大数据题目就通过bitmap这个神奇的结构给解决了,不过bitmap也不是万能的,很明显,它暂时只适合存储整形数据,当然这里只考虑了unsigned类型数据,如果是int类型的话,对应映射一下就可以了也是没问题的。不过即使如此,也只能处理10亿级别的数据,如果数据量更大、类型不只是整形呢?

  比如:需要写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过哪那些URL。给一个URL,怎样知道蜘蛛是否已经访问过?

  不难想到如下几种方案:

  1. 将访问过的URL全部保存到数据库;

  2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过;

  3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。

  4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。

  方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。

  以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。

  方法1:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?

  方法2:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。

  方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。

  方法4:消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。

  但是我们可以考虑如果在一定程度上忽略误判的情况,那么是不是可以通过改进方法4实现这一功能?其实这就是Bloom Filter的算法 的思想:Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。其思想就是在方法4基础上做了一些改进,不是映射到一位,而是通过K个哈希函数映射到K位上,这样只有当新的URL计算得到的K位都为1时才判断为该URL已经访问过(有误判的可能性,不过有相关研究证明,取得合适的K值和bitmap位数时可以让误判率很小以至于可以忽略,参见细节)

  当然,还可以通过map-reduce来处理,毕竟人家mapreduce可是行家,专业的大数据处理技术嘛!

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/12d13aa0774ca10946c5c0d58b98067e.html