研究MapReduce已经有一段时间了。起初是从分析WordCount程序开始,后来开始阅读Hadoop源码,自认为已经看清MapReduce的运行流程。现在把自己的理解贴出来,与大家分享,欢迎纠错。
还是以最经典的WordCount程序作为基础,来分析map阶段、reduce阶段和最复杂的shuffle阶段。
文本1:hello world 文本2:map reduce
hello hadoop java interface
abc qaz java hdfs
java jvm spark storm
这样的2个小文本文件(不足64M),肯定会产生2个map任务,reduce任务默认是1个。当然,map任务和reduce任务的个数都可以在程序中或者配置文件中人为设置。为了说明partition的过程,我们把reduce任务的个数设为2。
1、map阶段
map1 map2
输入:<xxxx, hello world> <xxxx, map reduce>
<xxxx, hello hadoop> <xxxx, java interface>
<xxxx, abc qaz> <xxxx, java hdfs>
<xxxx, java jvm> <xxxx, spark storm>
切分:<hello, 1> <map, 1>
<word, 1> <reduce, 1>
<hello, 1> <java, 1>
<hadoop, 1> <interface, 1>
<abc, 1> <java, 1>
<qaz, 1> <hdfs, 1>
<java, 1> <spark, 1>
<jvm, 1> <storm, 1>
2、shuffle阶段
切分完毕后,每一组<key, value>都会不断地被collect到一个内存缓冲区中,对应代码中的数据结构MapOutputBuffer。
partition过程:每一组<key, value>在被收集的时候,就已经确定了分区(partition),即在这个时候就已经确定了要交给哪个reduce任务处理。分区会给<key, value>加上一个索引标识。假设分区后(分区算法可以设定,默认是hash值模运算),数据如下:reduce1的标识是0,reduce2的标识是1