Caffe已经是第三次安装配置了,为什么是第三次呢?因为我实在是低估了深度学习对于硬件的要求。第一次我在自己笔记本上配置的单核,CPU only ... 结果是,样例数据跑了4小时,这还怎么玩?第二次在台式机上,因为台式机比较low,I5处理器4核,没有NVIDIA的GPU。我把别人训练好的模型下载下来,然后自己测试,发现真的成功了,心里小激动~ 然而,当我自己训练模型时,我训练7天..... 关键是7天了还在跑.....
心想,我这个穷逼难道要自己掏钱买个服务器?那怎么可能。还好,老师人非常好,给我找了个服务器~ 现在终于是劳资大显身手的时候了。
整个配置过程很长啊,坑多,没有Linux基础的就别来了,你会崩溃的。我参考了好几个帖子,基本上每个帖子都有或多或少的问题,文章结尾的时候,我会留下前辈们的文章地址,算是对他们的尊敬和对我帮助的感谢。好,下面切入正题!
电脑配置:
系统:Ubuntu16.04 GPU:NVIDIA Corporation GM107GL [Quadro K620] (提示:在linux下可以通过 lspci | grep -i vga 查看)
Caffe 深度学习入门教程
Ubuntu 16.04下Matlab2014a+Anaconda2+OpenCV3.1+Caffe安装
Ubuntu 16.04系统下CUDA7.5配置Caffe教程
Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明
Caffe配置简明教程 ( Ubuntu 14.04 / CUDA 7.5 / cuDNN 5.1 / OpenCV 3.1 )
Ubuntu 16.04上安装Caffe(CPU only)
安装过程
1.安装相关依赖项
1 sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler 2 sudo apt-get install --no-install-recommends libboost-all-dev 3 sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev 4 sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
2.安装NVIDIA驱动
(1)查询NVIDIA驱动
首先去官网 http://?lang=en-us 查看适合自己显卡的驱动并下载:
驱动文件后缀名应当是以.run结尾的。我们要把这个文件移动到家目录下,原因是下面我们要切换到文字界面下,如果放到~/下载 下面,我们没有办法进入下载这个目录(没有中文输入法,且中文全部是乱码)
图1 输入显卡型号 图2 显卡驱动搜索结果
我的显卡型号是Quadro K620,系统是linux 64位,按照要求选择后点击search. 图2是搜索结果,点击下载就好了。
我下载后的驱动文件是:NVIDIA-Linux-x86_64-375.20.run
(2)安装驱动
在终端下输入: sudo gedit /etc/modprobe.d/blacklist.conf
输入密码后在最后一行加上 blacklist nouveau . 这里是将Ubuntu自带的显卡驱动加入黑名单。
在终端输入: sudo update-initramfs -u
重启电脑~
这里要尤其注意,安装显卡驱动要先切换到文字界面,(按Ctrl+Alt+F1~F6).所以,启动电脑后,先进入文字界面。
然后,输入命令 sudo service lightdm stop
现在可以安装驱动了,先进入家目录 cd ~ ,然后: sudo ./NVIDIA-Linux-x86_64-375.20.run,按照提示一步步来~
完成后,再次重启电脑。
安装完成之后输入以下指令进行验证: sudo nvidia-smi ,若列出了GPU的信息列表则表示驱动安装成功。如下图:
3.安装CUDA
CUDA是NVIDIA的编程语言平台,想使用GPU就必须要使用cuda。
(1)下载CUDA
首先在官网上(https://developer.nvidia.com/cuda-downloads)下载CUDA:
(2) 下载完成后执行以下命令:
1 sudo chmod 777 cuda_8.0.44_linux.run 2 sudo ./cuda_8.0.44_linux.run