目前自己撘过深度学习各种库、各种环境,已经搭建了n多台电脑,发现每台电脑配置安装方法各不相同,总会出现各不相同的错误,真是心塞。笔记本和台式机有差别,台式机之间的安装方法又各不相同,不同的系统版本环境、平台又各有差异。比如昨天搞的一台电脑,可能因为显卡比较新,然而Ubuntu 14.04、Ubuntu 15.04都比较旧,连安装系统都装不上,一开始在14.04上重装了n多次系统,还以为是自己电脑的问题。最后在Ubuntu 16.04竟然非常顺利完成了安装;然而16.04的版本,只有cuda8.0才支持,在这台破电脑上,又折腾了我快一天的时间。
显卡:GTX960
环境:Ubuntu16.04、cuda8.0
下面是我的安装之路,总的来说theano、keras、tensorflow都比较容易安装;最难安装的是caffe,因为caffe调用的第三方库比较杂、比较多。
一、安装cuda8.0
1、输入命令:
sudo vim /etc/modprobe.d/blacklist.conf在文件最后面,添加:
blacklist nouveau
sudo reboot
sudo apt-get remove --purge nvidia*
重启,然后进入终端:
sudo service lightdm stop
chmod +x cuda*.run
sudo ./cuda*.run2、安装cuda的过程中,一直跳出错误:
If you're sure that X is not running, but are getting this error, please delete any X lock files in /tmp.
那么我们可以直接删除X-lock文件,具体命令为:
sudo rm /tmp/.X0-lock3、ubuntu的gcc编译器是5.4.0,然而cuda8.0不支持5.0以上的编译器,因此需要降级,把编译器版本降到4.9:
sudo apt-get install g++-4.9
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 10
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 10
sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30
sudo update-alternatives --set cc /usr/bin/gcc
sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30
sudo update-alternatives --set c++ /usr/bin/g++等待安装完成
4、配置环境变量:
sudo vim /etc/profile在文件末尾添加:
PATH=/usr/local/cuda/bin:$PATH
export PATH
保存退出。输入命令:
source /etc/profile
使其生效。
输入命令:
sudo /etc/ld.so.conf.d/cuda.conf
添加内容:
/usr/local/cuda/lib645、验证测试
测试cuda是否安装成功:
cd /usr/local/cuda/samples
编译例子:
sudo make all -j8运行编译可执行结果文件:
./deviceQuery
二、安装theano
1、直接输入命令:
sudo pip install theano
2、配置参数文件:.theanorc
[global]
floatX=float32
device=gpu
base_compiledir=~/external/.theano/
allow_gc=False
warn_float64=warn
[mode]=FAST_RUN
[nvcc]
fastmath=True
[cuda]
root=/usr/local/cuda
3、运行测试例子:
from theano import function, config, shared, sandbox
import theano.tensor as T
import numpy
import time
vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
iters = 1000
rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print(f.maker.fgraph.toposort())
t0 = time.time()
for i in range(iters):
r = f()
t1 = time.time()
print("Looping %d times took %f seconds" % (iters, t1 - t0))
print("Result is %s" % (r,))
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
print('Used the cpu')
else:
print('Used the gpu')
可以看到结果:
/usr/bin/Python2.7 /home/hjimce/PycharmProjects/untitled/.idea/temp.py
Using gpu device 0: GeForce GTX 960 (CNMeM is disabled, cuDNN not available)
[GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>), HostFromGpu(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 0.302778 seconds
Result is [ 1.23178029 1.61879349 1.52278066 ..., 2.20771813 2.29967761
1.62323296]
Used the gpu
三、caffe环境搭建
1、切换编译器:
sudo update-alternatives --config g++选择g++ 5.0以上的对应编号
sudo update-alternatives --config gcc根据编号选择gcc编译器5.0以上的版本。
2、hd5相关问题:遇到hd5等相关找不到的文件错误。
输入命令:
cd /usr/lib/x86_64-linux-gnu
sudo ln -s libhdf5_serial.so.10.1.0 libhdf5.so
sudo ln -s libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so
3、caffe编译
从github上下载caffe,解压打开makefile.config对其进行修改,makefile.config修改内容内容如下:
将
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib改为: