Ubuntu 16.04系统下CUDA7.5配置Caffe教程(2)

5. Python配置
将之前github下载的caffe压缩文件解压缩到任一目录,然后安装python
python的版本安装有两种方式:
第一是直接安装anaconda,去官网下载 ,选择linux 64bit 2.7版本下载安装,anaconda安装方便但是需要在最后的make配置文件中更改python包含路径。
第二种方法就是使用原生的python2.7版本,终端下
sudo apt-get install python-pip 安装pip
这里我们用pip安装一些python需要的依赖包,不过为了避免各种问题,也可以通过apt-get安装,反正我这两种方式都安装了一遍(-.-)
sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose
以caffe默认解压到/home/user(你的用户名)/ ,文件夹名名称caffe为例
cd /home/user/caffe/python
sudo su
for req in $(cat requirements.txt); do pip install $req; done
这里用pip安装可能速度很慢,很可能下载好几个小时,推荐用清华大学的pip源临时安装,所以命令改为如下:
for req in $(cat requirements.txt); do pip install -i https://pypi.tuna.tsinghua.edu.cn/simple $req; done
这里如果第一次有很多红字错误,建议再运行几遍指导安装成功,对于黄字提示无需理会,可能是pip版本需要更新。

6. Caffe编译过程
接下来要进入最后的步骤了,终端中
cd /home/user/caffe
cp Makefile.config.example Makefile.config
gedit Makefile.config
将USE_CUDNN := 1 取消注释,在
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include后面打上一个空格 然后添加/usr/include/hdf5/serial 如果没有这一句可能会报一个找不到hdf5.h的错误
PYTHON_INCLUDE := /usr/include/python2.7 \
  /usr/lib/python2.7/dist-packages/numpy/core/include先不做更改。
如果是需要生成matlab的caffe wrapper 请取消注释MATLAB_DIR然后替换为自己的目录
说一下提前会出现的问题:
第一,make过程中出现比如 string.h ‘memcy’ was not declared in this scope的错误是由于gcc编译器版本太新,解决方法是打开makefile搜索并替换
NVCCFLAGS += -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)

NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
保存退出
第二,在make过程中还会报一个ld找不到libhdf5 和libhdf5_hl的链接问题,这个原因可能也是因为hdf5的问题,首先看/usr/lib/x86_64-linux-gnu 目录下有没有libhdf5.so和libhdf5_hl.so,如果有的话,查看属性是否有正确的链接(正常情况下应该是没有这两个文件),然后右键在终端中打开
sudo ln libhdf5_serial.so.10.1.0 libhdf5.so
sudo ln libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so
注意,10.1.0和10.0.2可能不同电脑安装版本不同,注意看当前目录下存在的文件然后
sudo ldconfig 生效
接下来就是直接编译的过程
cd /home/user/caffe
make all -j4
make test -j4
make runtest
make pycaffe
make matcaffe
如果编译没报错正常的话,基本就没问题了。测试python打开
cd /home/user/caffe/python
python
import caffe
如果不报错就说明编译成功
测试matlab打开./caffe/matlab/+caffe/private,看有没有生成一个caffe的mex文件,可以运行+test文件夹里面的程序测试。
小问题:
在使用python接口的时候,可能会报一个什么错误(我给忘记了–!),对了是’Mean shape incompatible with input shape.’的错误,处理方法是python/caffe文件夹,编辑io.py文件,将
if ms != self.inputs[in_][1:]:
raise ValueError('Mean shape incompatible with input shape.')
替换为
if ms != self.inputs[in_][1:]:
print(self.inputs[in_])
in_shape = self.inputs[in_][1:]
m_min, m_max = mean.min(), mean.max()
normal_mean = (mean - m_min) / (m_max - m_min)
mean = resize_image(normal_mean.transpose((1,2,0)),in_shape[1:]).transpose((2,0,1)) * (m_max - m_min) + m_min

然后make clean再重新make

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/15186.html