学习Hadoop,需要知道Hadoop生态圈中各个项目的功能与作用,为何要用开发这种新项目,而不使用已有项目实现这种功能。
2.1 HDFS
Hadoop的底层文件系统,与传统文件系统不同在于它是分布式的。同时与已有的分布式文件系统相比,它又有着旧分布式文件系统没有的优点。如:高可用性,高可靠性,吞吐量大,能使用廉价服务器构建,可通过不断增加机器数来进行拓展。具体实现在HDFS文章中记录。
2.2 HBase
构建在HDFS之上的分布式数据库系统。是一种基于列的NoSQL数据库,从另一个角度看也能看成键值对的NoSQL数据库。与传统关系型数据库相比,最大的优势在于可通过增加机器进行横向扩展,并且能使用廉价服务器。
2.3 Hive
一种分布式数据仓库,可以导入外部数据后用类SQL语言进行操作。一般用于历史数据的查询与分析。与HBase不同,HBase常用于实时的交互式查询。
2.4 MapRuduce
一种分布式计算框架,MapRuce本来就是一种计算模型的名称。核心思想是“分而治之”,能将计算分解成多个小计算,由多个机器同时计算。适合离线批处理。
2.5 Storm
一种流式计算框架,MapRuce适合批处理,无法完成流式数据的处理,因此开发出流式处理框架。
2.6 常见大数据处理需求
•离线批处理,特点:使用历史数据,大批量的处理,要求吞吐率。
•实时交互式处理,特点:用户交互使用,要求反映速度在秒级到数分钟之间。
•流式数据处理,特点:数据以流的形式输入,要求毫秒级的处理速度,且处理后的数据大部分都不用储存。
2.7 Hadoop组件关系
基本的关系就是,底层用HDFS存储,之上是核心计算框架MapRuduce。而Hive,Hbase,Pig等等组件一般都是将自身的操作转化成Mapreduce代码然后通过Mapreduce进行计算实现功能。同时与MapRuduce框架同一层次的Storm解决了流式数据的处理。Hbase虽然是使用Mapreduce框架进行处理,但是基本也能实现实时交互式处理的要求。(也正是Mapreduce存在种种问题,Spark渐渐兴起,虽然Mapreduce也做了各种优化,但是在某些领域相比Spark还是有些差距)。
三 Hadoop安装
1.准备。同一局域网的Linux服务器数台,我是用我的游戏本同时开了3个虚拟机代替的。
2.Linux里创建hadoop用户,专门负责Hadoop项目,便于管理与权限划分。
3.安装JDK,下载Hadoop时官方会指明JDK版本需求,设置JDK环境变量
4.安装SSH并设置免密登录。因为HDFS的NameNode与其他DateNode等节点的通讯与管理就是基于SSH协议的。并且将要使用的机器域名写入hosts文件,方便命名。