人工智能开发语言排行榜: 不死Java, 不朽C/C++, 新(2)

LISP 是世界上第二古老的编程语言(FORTRAN 更古老,但只差一年)。相比本文提到很多其它编程语言,它的应用并不广泛。不过在人工智能编程领域它还是相当重要的。ROS 的一部分是用 LISP 写的,虽然你不需要掌握这个来使用 ROS。

4. Java

Java 对程序员“掩盖”底层存储功能,这使得 Java 对程序的要求要比 C 语言对程序的要求更低一些,但这意味着你对底层代码的运行逻辑了解比较少。从软件工程的基础到探索机器人技术的未来,你很可能已经学习了 Java。

像 C# 和 MATLAB 一样,Java 是一种解释性语言,这意味着它不会被编译成机器代码。相反,Java 虚拟机在运行时解释指令。使用 Java,理论上让你可以在不同的机器上运行相同的代码,这得感谢 Java 虚拟机。在实践中,这不总是可行的,有时会导致代码运行缓慢。但是 Java 在一部分机器人学中非常流行,因此你也许需要它。

5. Prolog

Prolog是一种与计算语言和人工智能相关的逻辑编程语言和语义推理引擎。它具有灵活而且强大的框架,被广泛应用于定理证明,非数字编程,自然语言处理和AI。

Prolog 是一种具有形式逻辑的声明语言。AI开发者重视其预设计的搜索机制,非确定性,回溯机制,递归性质,高级抽象和模式匹配。

6. JavaScript

JavaScript 是一种高级、面向对象的直译语言,主要用于使网页交互和创建在线程序,包括游戏。

在JavaScript中,学习对话模型并不重要。学习服务器端的数据,然后通过Ajax调用学习者进行预测。 JavaScript有很多好用的库,我们总结其中3个:

ConventJS:实现深度学习的库——在浏览器中训练卷积神经网络。它支持完全连接的层以及非线性神经网络模块,分类和回归成本函数。

Synaptic:一个用于node.js.的神经网络库。 其通用算法是无架构的,可以用于开发和训练几乎所有类型的一阶和二阶神经网络架构。

Mind:它使用矩阵实现来处理训练数据。你可以完全自定义网络拓扑和上传/下载已学习的minds。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://www.heiqu.com/1590.html