分享4个最受欢迎的大数据可视化工具

想像阅读书本一样阅读数据流?这只有在电影中才有可能发生。 在现实世界中,企业必须使用数据可视化工具来读取原始数据的趋势和模式。

大数据可视化是进行各种大数据分析解决的最重要组成部分之一。 一旦原始数据流被以图像形式表示时,以此做决策就变得容易多了。 为了满足并超越客户的期望,大数据可视化工具应该具备这些特征:

·      能够处理不同种类型的传入数据

·      能够应用不同种类的过滤器来调整结果

·      能够在分析过程中与数据集进行交互

·      能够连接到其他软件来接收输入数据,或为其他软件提供输入数据

·      能够为用户提供协作选项

尽管实际上存在着无数专门用于大数据可视化的工具,且它们都是既开源又专有的,在这其中还是有一些工具表现比较突出,因为它们提供了上述所有或者很多部分功能。 我们将介绍4种最受欢迎的大数据可视化工具,帮助大家选择适合自己需求的工具。

Jupyter:大数据可视化的一站式商店

JupyteR是一个开源项目,通过十多种编程语言实现大数据分析、可视化和软件开发的实时协作。 它的界面包含代码输窗口,并通过运行输入的代码以基于所选择的可视化技术提供视觉可读的图像。

但是,以上提到的功能仅仅是冰山一角。 Jupyter Notebook可以在团队中共享,以实现内部协作,并促进团队共同合作进行数据分析。 团队可以将Jupyter Notebook上传到GitHub或Gitlab,以便能共同合作影响结果。团队可以使用Kubernetes将Jupyter Notebook包含在Docker容器中,也可以在任何其他使用Jupyter的机器上运行Notebook。 在最初使用Python和R时,Jupyter Notebook正在积极地引入Java,Go,C#,Ruby等其他编程语言编码的内核。

除此以外,Jupyter还能够与Spark这样的多框架进行交互,这使得对从具有不同输入源的程序收集的大量密集的数据进行数据处理时,Jupyte能够提供一个全能的解决方案。

  Tableau:AI,大数据和机器学习应用可视化的最佳解决方案

Tableau是大数据可视化的市场领导者之一,在为大数据操作,深度学习算法和多种类型的AI应用程序提供交互式数据可视化方面尤为高效。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://www.heiqu.com/1724.html