关于数据处理包dplyr的函数用法总结

dplyr专注处理dataframe对象, 并提供更稳健的与其它数据库对象间的接口。

一、5个关键的数据处理函数:

select() 返回列的子集
filter() 返回行的子集
arrange() 根据一个或多个变量对行排序。
mutate() 使用已有数据创建新的列
summarise() 对各个群组汇总计算并返回一维结果。

Tips

1select()

Dplyr包有下列辅助函数,用于在select()中选择变量:

starts_with("X"): 以 "X"开头的变量名
ends_with("X"): 以 "X"结束的变量名
contains("X"): 包含 "X"的变量名
matches("X"): 匹配正则表达式“x"的变量名
num_range("x", 1:5): 变量名为 x01, x02, x03, x04 and x05
one_of(x): 出现在字符向量x中的所有变量名

在select()中直接使用列时不需要引用"",但使用上述辅助函数时必须引用""。

2filter()

R 有一系列逻辑表达式可用于filter()中:

x < y;x <= y;x == y;x != y;x >= y;x > y;x %in% c(a, b, c)

示例:

filter(df, a > 0, b > 0)

filter(df, !is.na(x))

3arrange()

arrange()默认从小到大排序,在arrange()中使用desc()作用于变量可以使之从大到小排序.

4mutate()

mutate()允许在同一次调用中使用新变量来创建下一个变量,例如:

mutate(my_df, x = a + b, y = x + c)

5、 summarise()

R的下列聚合函数可用于 summarise()中

  • min(x) - 最小值.
  • max(x) - 最大值
  • mean(x) - 平均值
  • median(x) - 中位数
  • quantile(x, p) - x的第P个分位数
  • sd(x) -标准差
  • var(x) - 方差
  • IQR(x) - 四分位数
  • diff(range(x)) - x值的范围

dplyr包自身提供了一些有用的聚合函数:

  • first(x) - 向量x中的第1个元素
  • last(x) - 向量x中的最后1个元素
  • nth(x, n) - 向量x中的第n个元素
  • n() - data.frame中的行数或 summarise() 描述的观测组的数量
  • n_distinct(x) - 向量x中唯一值的数量

二、管道函数%>%

dplyr包中特有的管道函数%>%,将上一个函数的输出作为下一个函数的输入。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://www.heiqu.com/1756.html