Python 代码性能优化技巧

简介: 选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 Python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化来提高程序的执行效率。如何进行 Python 性能优化,是本文探讨的主要问题。本文会涉及常见的代码优化方法,性能优化工具的使用以及如何诊断代码的性能瓶颈等内容,希望可以给 Python 开发人员一定的参考。

Python 代码优化常见技巧

代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构、优化、扩展以及文档相关的事情通常需要消耗 80% 的工作量。优化通常包含两方面的内容:减小代码的体积,提高代码的运行效率。

改进算法,选择合适的数据结构

一个良好的算法能够对性能起到关键作用,因此性能改进的首要点是对算法的改进。在算法的时间复杂度排序上依次是:

O(1) -> O(lg n) -> O(n lg n) -> O(n^2) -> O(n^3) -> O(n^k) -> O(k^n) -> O(n!)

因此如果能够在时间复杂度上对算法进行一定的改进,对性能的提高不言而喻。但对具体算法的改进不属于本文讨论的范围,读者可以自行参考这方面资料。下面的内容将集中讨论数据结构的选择。

字典 (dictionary) 与列表 (list)

Python 字典中使用了 hash table,因此查找操作的复杂度为 O(1),而 list 实际是个数组,在 list 中,查找需要遍历整个 list,其复杂度为 O(n),因此对成员的查找访问等操作字典要比 list 更快。


清单 1. 代码 dict.py
from time import time t = time() list = ['a','b','is','python','jason','hello','hill','with','phone','test', 'dfdf','apple','pddf','ind','basic','none','baecr','var','bana','dd','wrd'] #list = dict.fromkeys(list,True) print list filter = [] for i in range (1000000): for find in ['is','hat','new','list','old','.']: if find not in list: filter.append(find) print "total run time:" print time()-t  

上述代码运行大概需要 16.09seconds。如果去掉行 #list = dict.fromkeys(list,True) 的注释,将 list 转换为字典之后再运行,时间大约为 8.375 seconds,效率大概提高了一半。因此在需要多数据成员进行频繁的查找或者访问的时候,使用 dict 而不是 list 是一个较好的选择。

集合 (set) 与列表 (list)

set 的 union, intersection,difference 操作要比 list 的迭代要快。因此如果涉及到求 list 交集,并集或者差的问题可以转换为 set 来操作。


清单 2. 求 list 的交集:
from time import time t = time() lista=[1,2,3,4,5,6,7,8,9,13,34,53,42,44] listb=[2,4,6,9,23] intersection=[] for i in range (1000000): for a in lista: for b in listb: if a == b: intersection.append(a) print "total run time:" print time()-t  

上述程序的运行时间大概为:

total run time: 38.4070000648  


清单 3. 使用 set 求交集
from time import time t = time() lista=[1,2,3,4,5,6,7,8,9,13,34,53,42,44] listb=[2,4,6,9,23] intersection=[] for i in range (1000000): list(set(lista)&set(listb)) print "total run time:" print time()-t  

改为 set 后程序的运行时间缩减为 8.75,提高了 4 倍多,运行时间大大缩短。读者可以自行使用表 1 其他的操作进行测试。


表 1. set 常见用法
语法 操作 说明
set(list1) | set(list2)   union   包含 list1 和 list2 所有数据的新集合  
set(list1) & set(list2)   intersection   包含 list1 和 list2 中共同元素的新集合  
set(list1) - set(list2)   difference   在 list1 中出现但不在 list2 中出现的元素的集合  

对循环的优化

对循环的优化所遵循的原则是尽量减少循环过程中的计算量,有多重循环的尽量将内层的计算提到上一层。 下面通过实例来对比循环优化后所带来的性能的提高。程序清单 4 中,如果不进行循环优化,其大概的运行时间约为 132.375。


清单 4. 为进行循环优化前
from time import time t = time() lista = [1,2,3,4,5,6,7,8,9,10] listb =[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.01] for i in range (1000000): for a in range(len(lista)): for b in range(len(listb)): x=lista[a]+listb[b] print "total run time:" print time()-t  

现在进行如下优化,将长度计算提到循环外,range 用 xrange 代替,同时将第三层的计算 lista[a] 提到循环的第二层。


清单 5. 循环优化后
from time import time t = time() lista = [1,2,3,4,5,6,7,8,9,10] listb =[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.01] len1=len(lista) len2=len(listb) for i in xrange (1000000): for a in xrange(len1): temp=lista[a] for b in xrange(len2): x=temp+listb[b] print "total run time:" print time()-t  

上述优化后的程序其运行时间缩短为 102.171999931。在清单 4 中 lista[a] 被计算的次数为 1000000*10*10,而在优化后的代码中被计算的次数为 1000000*10,计算次数大幅度缩短,因此性能有所提升。

充分利用 Lazy if-evaluation 的特性

python 中条件表达式是 lazy evaluation 的,也就是说如果存在条件表达式 if x and y,在 x 为 false 的情况下 y 表达式的值将不再计算。因此可以利用该特性在一定程度上提高程序效率。


清单 6. 利用 Lazy if-evaluation 的特性
from time import time t = time() abbreviations = ['cf.', 'e.g.', 'ex.', 'etc.', 'fig.', 'i.e.', 'Mr.', 'vs.'] for i in range (1000000): for w in ('Mr.', 'Hat', 'is', 'chasing', 'the', 'black', 'cat', '.'): if w in abbreviations: #if w[-1] == '.' and w in abbreviations: pass print "total run time:" print time()-t  

在未进行优化之前程序的运行时间大概为 8.84,如果使用注释行代替第一个 if,运行的时间大概为 6.17。

字符串的优化

python 中的字符串对象是不可改变的,因此对任何字符串的操作如拼接,修改等都将产生一个新的字符串对象,而不是基于原字符串,因此这种持续的 copy 会在一定程度上影响 python 的性能。对字符串的优化也是改善性能的一个重要的方面,特别是在处理文本较多的情况下。字符串的优化主要集中在以下几个方面:

在字符串连接的使用尽量使用 join() 而不是 +:在代码清单 7 中使用 + 进行字符串连接大概需要 0.125 s,而使用 join 缩短为 0.016s。因此在字符的操作上 join 比 + 要快,因此要尽量使用 join 而不是 +。


清单 7. 使用 join 而不是 + 连接字符串
from time import time t = time() s = "" list = ['a','b','b','d','e','f','g','h','i','j','k','l','m','n'] for i in range (10000): for substr in list: s+= substr print "total run time:" print time()-t  

同时要避免:

s = "" for x in list: s += func(x)  

而是要使用:

slist = [func(elt) for elt in somelist] s = "".join(slist)  

当对字符串可以使用正则表达式或者内置函数来处理的时候,选择内置函数。如 str.isalpha(),str.isdigit(),str.startswith(('x', 'yz')),str.endswith(('x', 'yz')) 对字符进行格式化比直接串联读取要快,因此要使用

out = "<html>%s%s%s%s</html>" % (head, prologue, query, tail)  

而避免

out = "<html>" + head + prologue + query + tail + "</html>"  

使用列表解析(list comprehension)和生成器表达式(generator expression)

列表解析要比在循环中重新构建一个新的 list 更为高效,因此我们可以利用这一特性来提高运行的效率。

from time import time t = time() list = ['a','b','is','python','jason','hello','hill','with','phone','test', 'dfdf','apple','pddf','ind','basic','none','baecr','var','bana','dd','wrd'] total=[] for i in range (1000000): for w in list: total.append(w) print "total run time:" print time()-t  

使用列表解析:

for i in range (1000000): a = [w for w in list]  

上述代码直接运行大概需要 17s,而改为使用列表解析后 ,运行时间缩短为 9.29s。将近提高了一半。生成器表达式则是在 2.4 中引入的新内容,语法和列表解析类似,但是在大数据量处理时,生成器表达式的优势较为明显,它并不创建一个列表,只是返回一个生成器,因此效率较高。在上述例子上中代码 a = [w for w in list] 修改为 a = (w for w in list),运行时间进一步减少,缩短约为 2.98s。

其他优化技巧

如果需要交换两个变量的值使用 a,b=b,a 而不是借助中间变量 t=a;a=b;b=t;

>>> from timeit import Timer >>> Timer("t=a;a=b;b=t","a=1;b=2").timeit() 0.25154118749729365 >>> Timer("a,b=b,a","a=1;b=2").timeit() 0.17156677734181258 >>>  

在循环的时候使用 xrange 而不是 range;使用 xrange 可以节省大量的系统内存,因为 xrange() 在序列中每次调用只产生一个整数元素。而 range() 將直接返回完整的元素列表,用于循环时会有不必要的开销。在 python3 中 xrange 不再存在,里面 range 提供一个可以遍历任意长度的范围的 iterator。 使用局部变量,避免"global" 关键字。python 访问局部变量会比全局变量要快得多,因 此可以利用这一特性提升性能。 if done is not None 比语句 if done != None 更快,读者可以自行验证; 在耗时较多的循环中,可以把函数的调用改为内联的方式; 使用级联比较 "x < y < z" 而不是 "x < y and y < z"; while 1 要比 while True 更快(当然后者的可读性更好); build in 函数通常较快,add(a,b) 要优于 a+b。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://www.heiqu.com/18ca4f3bfa9fc6bb9854cfc58c7500c6.html