Linux对I/O端口资源的管理

  几乎每一种外设都是通过读写设备上的寄存器来进行的。外设寄存器也称为“I/O端口”,通常包括:控制寄存器、状态寄存器和数据寄存器三大类, 而且一个外设的寄存器通常被连续地编址。CPU对外设IO端口物理地址的编址方式有两种:一种是I/O映射方式(I/O-mapped),另一种是内存映 射方式(Memory-mapped)。而具体采用哪一种则取决于CPU的体系结构。

  有些体系结构的CPU(如,PowerPC、m68k等)通常只实现一个物理地址空间(RAM)。在这种情况下,外设I/O端口的物理地址就被 映射到CPU的单一物理地址空间中,而成为内存的一部分。此时,CPU可以象访问一个内存单元那样访问外设I/O端口,而不需要设立专门的外设I/O指 令。这就是所谓的“内存映射方式”(Memory-mapped)。

  而另外一些体系结构的CPU(典型地如X86)则为外设专门实现了一个单独地地址空间,称为“I/O地址空间”或者“I/O端口空间”。这是一 个与CPU地RAM物理地址空间不同的地址空间,所有外设的I/O端口均在这一空间中进行编址。CPU通过设立专门的I/O指令(如X86的IN和OUT 指令)来访问这一空间中的地址单元(也即I/O端口)。这就是所谓的“I/O映射方式”(I/O-mapped)。与RAM物理地址空间相比,I/O地址 空间通常都比较小,如x86 CPU的I/O空间就只有64KB(0-0xffff)。这是“I/O映射方式”的一个主要缺点。

  Linux将基于I/O映射方式的或内存映射方式的I/O端口通称为“I/O区域”(I/O region)。在讨论对I/O区域的管理之前,我们首先来分析一下Linux是如何实现“I/O资源”这一抽象概念的。

3.1 Linux对I/O资源的描述

  Linux设计了一个通用的数据结构resource来描述各种I/O资源(如:I/O端口、外设内存、DMA和IRQ等)。该结构定义在include/linux/ioport.h头文件中:

  struct resource { const char *name; unsigned long start, end; unsigned long flags; struct resource *parent, *sibling, *child;  };

  各成员的含义如下:

  1. name指针:指向此资源的名称。
  2. start和end:表示资源的起始物理地址和终止物理地址。它们确定了资源的范围,也即是一个闭区间[start,end]。
  3. flags:描述此资源属性的标志(见下面)。
  4. 指针parent、sibling和child:分别为指向父亲、兄弟和子资源的指针。

  属性flags是一个unsigned long类型的32位标志值,用以描述资源的属性。比如:资源的类型、是否只读、是否可缓存,以及是否已被占用等。下面是一部分常用属性标志位的定义(ioport.h):

/* * IO resources have these defined flags. */#define IORESOURCE_BITS  0x000000ff /* Bus-specific bits */#define IORESOURCE_IO  0x00000100 /* Resource type */#define IORESOURCE_MEM  0x00000200#define IORESOURCE_IRQ  0x00000400#define IORESOURCE_DMA  0x00000800#define IORESOURCE_PREFETCH 0x00001000 /* No side effects */#define IORESOURCE_READONLY 0x00002000#define IORESOURCE_CACHEABLE 0x00004000#define IORESOURCE_RANGELENGTH 0x00008000#define IORESOURCE_SHADOWABLE 0x00010000#define IORESOURCE_BUS_HAS_VGA 0x00080000#define IORESOURCE_UNSET 0x20000000#define IORESOURCE_AUTO  0x40000000#define IORESOURCE_BUSY  0x80000000 /* Driver has marked this resource busy */

  指针parent、sibling和child的设置是为了以一种树的形式来管理各种I/O资源。

3.2 Linux对I/O资源的管理

  Linux是以一种倒置的树形结构来管理每一类I/O资源(如:I/O端口、外设内存、DMA和IRQ)的。每一类I/O资源都对应有一颗倒置的资源树,树中的每一个节点都是一个resource结构,而树的根结点root则描述了该类资源的整个资源空间。

  基于上述这个思想,Linux在kernel/Resource.c文件中实现了对资源的申请、释放及查找等操作。

  3.2.1 I/O资源的申请

  假设某类资源有如下这样一颗资源树:

  节点root、r1、r2和r3实际上都是一个resource结构类型。子资源r1、r2和r3通过sibling指针链接成一条单向非循环 链表,其表头由root节点中的child指针定义,因此也称为父资源的子资源链表。r1、r2和r3的parent指针均指向他们的父资源节点,在这里 也就是图中的root节点。

  假设想在root节点中分配一段I/O资源(由图中的阴影区域表示)。函数request_resource()实现这一功能。它有两个参数: ①root指针,表示要在哪个资源根节点中进行分配;②new指针,指向描述所要分配的资源(即图中的阴影区域)的resource结构。该函数的源代码 如下(kernel/resource.c):

  int request_resource(struct resource *root, struct resource *new)  { struct resource *conflict; write_lock(&resource_lock); conflict = __request_resource(root, new); write_unlock(&resource_lock); return conflict ? -EBUSY : 0;  }

  对上述函数的NOTE如下:

  ①资源锁resource_lock对所有资源树进行读写保护,任何代码段在访问某一颗资源树之前都必须先持有该锁。其定义如下(kernel/Resource.c):

  static rwlock_t resource_lock = RW_LOCK_UNLOCKED;

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/25128.html