什么是系统调用
Linux上的系统调用实现原理
一个简单的系统调用的实现
1. 什么是系统调用简单来说,系统调用就是用户程序和硬件设备之间的桥梁。
用户程序在需要的时候,通过系统调用来使用硬件设备。
系统调用的存在,有以下重要的意义:
1)用户程序通过系统调用来使用硬件,而不用关心具体的硬件设备,这样大大简化了用户程序的开发。
比如:用户程序通过write()系统调用就可以将数据写入文件,而不必关心文件是在磁盘上还是软盘上,或者其他存储上。
2)系统调用使得用户程序有更好的可移植性。
只要操作系统提供的系统调用接口相同,用户程序就可在不用修改的情况下,从一个系统迁移到另一个操作系统。
3)系统调用使得内核能更好的管理用户程序,增强了系统的稳定性。
因为系统调用是内核实现的,内核通过系统调用来控制开放什么功能及什么权限给用户程序。
这样可以避免用户程序不正确的使用硬件设备,从而破坏了其他程序。
4)系统调用有效的分离了用户程序和内核的开发。
用户程序只需关心系统调用API,通过这些API来开发自己的应用,不用关心API的具体实现。
内核则只要关心系统调用API的实现,而不必管它们是被如何调用的。
用户程序,系统调用,内核,硬件设备的调用关系如下图:
2. Linux上的系统调用实现原理要想实现系统调用,主要实现以下几个方面:
通知内核调用一个哪个系统调用
用户程序把系统调用的参数传递给内核
用户程序获取内核返回的系统调用返回值
下面看看Linux是如何实现上面3个功能的。
2.1 通知内核调用一个哪个系统调用每个系统调用都有一个系统调用号,系统调用发生时,内核就是根据传入的系统调用号来知道是哪个系统调用的。
在x86架构中,用户空间将系统调用号是放在eax中的,系统调用处理程序通过eax取得系统调用号。
系统调用号定义在内核代码:arch/alpha/include/asm/unistd.h 中,可以看出linux的系统调用不是很多。
2.2 用户程序把系统调用的参数传递给内核系统调用的参数也是通过寄存器传给内核的,在x86系统上,系统调用的前5个参数放在ebx,ecx,edx,esi和edi中,如果参数多的话,还需要用个单独的寄存器存放指向所有参数在用户空间地址的指针。
一般的系统调用都是通过C库(最常用的是glibc库)来访问的,Linux内核提供一个从用户程序直接访问系统调用的方法。
参见内核代码:arch/cris/include/arch-v10/arch/unistd.h
里面定义了6个宏,分别可以调用参数个数为0~6的系统调用
_syscall0(type,name)
_syscall1(type,name,type1,arg1)
_syscall2(type,name,type1,arg1,type2,arg2)
_syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)
_syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)
_syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5)
_syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5,type6,arg6)
超过6个参数的系统调用很罕见,所以这里只定义了6个。
2.3 用户程序获取内核返回的系统调用返回值获取系统调用的返回值也是通过寄存器,在x86系统上,返回值放在eax中。
3. 一个简单的系统调用的实现了解了Linux上系统调用的原理,下面就可以自己来实现一个简单的系统调用。
3.1 环境准备为了不破坏现有系统,我是用虚拟机来实验的。
主机:Fedora16 x86_64系统 + kvm(一种虚拟技术,就像virtualbox,vmware等)
虚拟机: 也是安装fedora16 x86_64系统(通过virt-manager很容易安装一个系统)
下载内核源码: 下载最新的就行
3.2 修改内核源码中的相应文件主要修改以下文件:
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/syscall_table_32.S
include/asm-generic/unistd.h
include/linux/syscalls.h
kernel/sys.c
我在sys.c中追加了2个函数:sys_foo和sys_bar
如果是在x86_64的内核中增加一个系统调用,只需修改 arch/x86/include/asm/unistd_64.h,比如sys_bar。
修改内容参见下面的diff文件:
diff -r new/arch/x86/ia32/ia32entry.S old/arch/x86/ia32/ia32entry.S 855d854 < .quad sys_foo diff -r new/arch/x86/include/asm/unistd_32.h old/arch/x86/include/asm/unistd_32.h 357d356 < #define __NR_foo 349 361c360 < #define NR_syscalls 350 --- > #define NR_syscalls 349 diff -r new/arch/x86/include/asm/unistd_64.h old/arch/x86/include/asm/unistd_64.h 689,692d688 < #define __NR_foo 312 < __SYSCALL(__NR_foo, sys_foo) < #define __NR_bar 313 < __SYSCALL(__NR_bar, sys_bar) diff -r new/arch/x86/kernel/syscall_table_32.S old/arch/x86/kernel/syscall_table_32.S 351d350 < .long sys_foo diff -r new/include/asm-generic/unistd.h old/include/asm-generic/unistd.h 694,695d693 < #define __NR_foo 272 < __SYSCALL(__NR_foo, sys_foo) 698c696 < #define __NR_syscalls 273 --- > #define __NR_syscalls 272 diff -r new/kernel/sys.c old/kernel/sys.c 1920,1928d1919 < < asmlinkage long sys_foo(void) < { < return 1112223334444555; < } < asmlinkage long sys_bar(void) < { < return 1234567890; < } 3.3 编译内核
#cd linux-3.2.28
#make menuconfig (选择要编译参数,如果不熟悉内核编译,用默认选项即可)
#make all (这一步真的时间很长......)
#make modules_install
#make install (这一步会把新的内核加到启动项中)
#reboot (重启系统进入新的内核)
#include <unistd.h> #include <sys/syscall.h> #include <string.h> #include <stdio.h> #include <errno.h> #define __NR_foo 312 #define __NR_bar 313 int main() { printf ("result foo is %ld\n", syscall(__NR_foo)); printf("%s\n", strerror(errno)); printf ("result bar is %ld\n", syscall(__NR_bar)); printf("%s\n", strerror(errno)); return 0; }
编译运行上面的代码:
#gcc test.c -o test #./test
运行结果如下:
result foo is 1112223334444555 Success result bar is 1234567890 Success