writeback机制源码分析(2)

在bdi数据结构中定义了一个writeback对象,该对象是对writeback内核线程的描述,并且封装了需要处理的inode队列。在bdi数据结构中有一条work_list,该work队列维护了writeback内核线程需要处理的任务。如果该队列上没有work可以处理,那么writeback内核线程将会睡眠等待。

writeback

writeback对象封装了内核线程task以及需要处理的inode队列。当page cache/buffer cache需要刷新radix tree上的inode时,可以将该inode挂载到writeback对象的b_dirty队列上,然后唤醒writeback线程。在处理过程中,inode会被移到b_io队列上进行处理。多条链表的方式可以降低多线程之间的资源共享。writeback数据结构具体定义如下:

struct bdi_writeback {
struct backing_dev_info *bdi; /* our parent bdi */
unsigned int nr;

unsigned long last_old_flush; /* last old data flush */
unsigned long last_active; /* last time bdi thread was active */

struct task_struct *task; /* writeback thread */
struct timer_list wakeup_timer; /* used for delayed bdi thread wakeup */
struct list_head b_dirty; /* dirty inodes */
struct list_head b_io; /* parked for writeback */
struct list_head b_more_io; /* parked for more writeback */
spinlock_t list_lock; /* protects the b_* lists */
};

writeback work

wb_writeback_work数据结构是对writeback任务的封装,不同的任务可以采用不同的刷新策略。writeback线程的处理对象就是writeback_work。如果writeback_work队列为空,那么内核线程就可以睡眠了。

Writeback_work的数据结构定义如下:

struct wb_writeback_work {
 long nr_pages;
 struct super_block *sb; /* superblock对象 */
unsigned long *older_than_this;
 enum writeback_sync_modes sync_mode;
 unsigned int tagged_writepages:1;
 unsigned int for_kupdate:1;
 unsigned int range_cyclic:1;
 unsigned int for_background:1;
 enum wb_reason reason; /* why was writeback initiated? */

struct list_head list; /* pending work list,链入bdi-> work_list队列 */
struct completion *done; /* set if the caller waits,work完成时通知调用者 */
};

writeback主要函数分析

writeback机制的主要函数包括如下两个方面:

1,管理bdi对象并且fork相应的writeback内核线程处理cache数据的刷新工作。

2,writeback内核线程处理函数,实现dirty page的刷新操作

writeback线程管理

Linux中有一个内核守护线程,该线程用来管理系统bdi队列,并且负责为block device创建writeback thread。当bdi中有dirty page并且还没有为bdi分配内核线程的时候,bdi_forker_thread程序会为其分配线程资源;当一个writeback线程长时间处于空闲状态时,bdi_forker_thread程序会释放该线程资源。

writeback线程管理程序分析如下:

static int bdi_forker_thread(void *ptr)
{
struct bdi_writeback *me = ptr;

current->flags |= PF_SWAPWRITE;
set_freezable();

/*
* Our parent may run at a different priority, just set us to normal
*/
set_user_nice(current, 0);

for (;;) {
struct task_struct *task = NULL;
struct backing_dev_info *bdi;
enum {
NO_ACTION, /* Nothing to do */
FORK_THREAD, /* Fork bdi thread */
KILL_THREAD, /* Kill inactive bdi thread */
} action = NO_ACTION;

/*
* Temporary measure, we want to make sure we don't see
* dirty data on the default backing_dev_info
*/
if (wb_has_dirty_io(me) || !list_empty(&me->bdi->work_list)) {
del_timer(&me->wakeup_timer);
wb_do_writeback(me, 0);
}

spin_lock_bh(&bdi_lock);
/*
* In the following loop we are going to check whether we have
* some work to do without any synchronization with tasks
* waking us up to do work for them. Set the task state here
* so that we don't miss wakeups after verifying conditions.
*/
set_current_state(TASK_INTERRUPTIBLE);
/* 遍历所有的bdi对象,检查这些bdi是否存在脏数据,如果有脏数据,那么需要为其fork线程,然后做writeback操作 */
list_for_each_entry(bdi, &bdi_list, bdi_list) {
bool have_dirty_io;

if (!bdi_cap_writeback_dirty(bdi) ||
bdi_cap_flush_forker(bdi))
continue;

WARN(!test_bit(BDI_registered, &bdi->state),
"bdi %p/%s is not registered!\n", bdi, bdi->name);
/* 检查是否存在脏数据 */
have_dirty_io = !list_empty(&bdi->work_list) ||
wb_has_dirty_io(&bdi->wb);

/*
* If the bdi has work to do, but the thread does not
* exist - create it.
*/
if (!bdi->wb.task && have_dirty_io) {
/*
* Set the pending bit - if someone will try to
* unregister this bdi - it'll wait on this bit.
*/
/* 如果有脏数据,并且不存在线程,那么接下来做线程的FORK操作 */
set_bit(BDI_pending, &bdi->state);
action = FORK_THREAD;
break;
}

spin_lock(&bdi->wb_lock);

/*
* If there is no work to do and the bdi thread was
* inactive long enough - kill it. The wb_lock is taken
* to make sure no-one adds more work to this bdi and
* wakes the bdi thread up.
*/
/* 如果一个bdi长时间没有脏数据,那么执行线程的KILL操作,结束掉该bdi对应的writeback线程 */
if (bdi->wb.task && !have_dirty_io &&
time_after(jiffies, bdi->wb.last_active +
bdi_longest_inactive())) {
task = bdi->wb.task;
bdi->wb.task = NULL;
spin_unlock(&bdi->wb_lock);
set_bit(BDI_pending, &bdi->state);
action = KILL_THREAD;
break;
}
spin_unlock(&bdi->wb_lock);
}
spin_unlock_bh(&bdi_lock);

/* Keep working if default bdi still has things to do */
if (!list_empty(&me->bdi->work_list))
__set_current_state(TASK_RUNNING);
/* 执行线程的FORK和KILL操作 */
switch (action) {
case FORK_THREAD:
/* FORK一个bdi_writeback_thread线程,该线程的名字为flush-major:minor */
__set_current_state(TASK_RUNNING);
task = kthread_create(bdi_writeback_thread, &bdi->wb,
"flush-%s", dev_name(bdi->dev));
if (IS_ERR(task)) {
/*
* If thread creation fails, force writeout of
* the bdi from the thread. Hopefully 1024 is
* large enough for efficient IO.
*/
writeback_inodes_wb(&bdi->wb, 1024,
WB_REASON_FORKER_THREAD);
} else {
/*
* The spinlock makes sure we do not lose
* wake-ups when racing with 'bdi_queue_work()'.
* And as soon as the bdi thread is visible, we
* can start it.
*/
spin_lock_bh(&bdi->wb_lock);
bdi->wb.task = task;
spin_unlock_bh(&bdi->wb_lock);
wake_up_process(task);
}
bdi_clear_pending(bdi);
break;

case KILL_THREAD:
/* KILL一个线程 */
__set_current_state(TASK_RUNNING);
kthread_stop(task);
bdi_clear_pending(bdi);
break;

case NO_ACTION:
/* 如果没有可执行的动作,那么调度本线程睡眠一段时间 */
if (!wb_has_dirty_io(me) || !dirty_writeback_interval)
/*
* There are no dirty data. The only thing we
* should now care about is checking for
* inactive bdi threads and killing them. Thus,
* let's sleep for longer time, save energy and
* be friendly for battery-driven devices.
*/
schedule_timeout(bdi_longest_inactive());
else
schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
try_to_freeze();
break;
}
}

return 0;
}

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://www.heiqu.com/3cd45cd455010d40942cb35c7bf40743.html