上述的p并没有做任何限制。由于a1,a2,..,an中包含的所有素因子在M/(M/a1,M/a2,..,M/an)中都为a1,a2,..,an中的最高次数,故有[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an)成立。
得证。
定理1对于2个数的情况为[a,b]=ab/(ab/a,ab/b)=ab/(b,a)=ab/(a,b),即[a,b]=ab/(a,b)。因此,定理1为2个数最小公倍数公式[a,b]=ab/(a,b)的扩展。利用定理1能够把求多个数的最小公倍数转化为求多个数的最大公约数。
2.多个数最大公约数的算法实现
根据定理1,求多个数最小公倍数可以转化为求多个数的最大公约数。求多个数的最大公约数(a1,a2,..,an)的传统方法是多次求两个数的最大公约数,即
(1)用辗转相除法[2]计算a1和a2的最大公约数(a1,a2)
(2)用辗转相除法计算(a1,a2)和a3的最大公约数,求得(a1,a2,a3)
(3)用辗转相除法计算(a1,a2,a3)和a4的最大公约数,求得(a1,a2,a3,a4)
(4)依此重复,直到求得(a1,a2,..,an)
上述方法需要n-1次辗转相除运算。
本文将两个数的辗转相除法扩展为n个数的辗转相除法,即用一次n个数的辗转相除法计算n个数的最大公约数,基本方法是采用反复用最小数模其它数的方法进行计算,依据是下面的定理2。
定理2:多个非负整数a1,a2,..,an,若aj>ai,i不等于j,则在a1,a2,..,an中用aj-ai替换aj,其最大公约数不变,即 (a1,a2,..,aj-1,aj,aj+1,..an)=(a1,a2,..,aj-1,aj-ai,aj+1,..an)。
例如:(34,24,56,68)=(34,24,56-34,68)=(34,24,22,68)。
证明:
根据最大公约数的交换律和结合率,有
(a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,ai-1,ai+1,..aj-1,aj+1,..an))(i>j情况),或者
(a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,aj-1,aj+1,..ai-1,ai+1,..an))(i<j情况)。
而对(a1,a2,..,aj-1,aj-ai,aj+1,..an),有
(a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,ai-1,ai+1,.. aj-1,aj+1,..an))(i>j情况),或者
(a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,aj-1,aj+1,.. ai-1,ai+1,..an))(i<j情况)。
因此只需证明(ai,aj)=( ai, aj-ai)即可。
由于(aj-ai)= aj-ai,因此ai,aj的任意公因子必然也是(aj-ai)的因子,即也是ai,( aj-ai)的公因子。由于aj = (aj-ai)+ai,因此ai,( aj-ai)的任意公因子必然也是aj的因子,即也是ai,aj的公因子。所以,ai,aj的最大公约数和ai,(aj-ai) 的最大公约数必须相等,即(ai,aj)=(ai,aj-ai)成立。
得证。
定理2类似于矩阵的初等变换,即
令一个向量的最大公约数为该向量各个分量的最大公约数。对于向量<a1,a2,..,an>进行变换:在一个分量中减去另一个分量,新向量和原向量的最大公约数相等。
求多个数的最大公约数采用反复用最小数模其它数的方法,即对其他数用最小数多次去减,直到剩下比最小数更小的余数。令n个正整数为a1,a2,..,an,求多个数最大共约数的算法描述为:
(1)找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个
(2)aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(4)
(3)转到(3)
(4)a1,a2,..,an的最大公约数为aj
例如:对于5个数34, 56, 78, 24, 85,有
(34, 56, 78, 24, 85)=(10,8,6,24,13)=(4,2,6,0,1)=(0,0,0,0,1)=1,
对于6个数12, 24, 30, 32, 36, 42,有
(12, 24, 30, 32, 36, 42)=(12,0,6,8,0,6)=(0,0,0,2,0,6)=(0,0,0,2,0,0)=2。
3. 多个数最小共倍数的算法实现
求多个数最小共倍数的算法为:
(1)计算m=a1*a2*..*an
(2)把a1,a2,..,an中的所有项ai用m/ai代换
(3)找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个
(4)aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(6)
(5)转到(3)
(6)最小公倍数为m/aj