关于一致性Hash算法,在我之前的博文中已经有多次提到了,Memcache的详细讲解一文中"一致性Hash算法"部分,对于为什么要使用一致性Hash算法、一致性Hash算法的算法原理做了详细的解读。
算法的具体原理这里再次贴上:
先构造一个长度为232的整数环(这个环被称为一致性Hash环),根据节点名称的Hash值(其分布为[0, 232-1])将服务器节点放置在这个Hash环上,然后根据数据的Key值计算得到其Hash值(其分布也为[0, 232-1]),接着在Hash环上顺时针查找距离这个Key值的Hash值最近的服务器节点,完成Key到服务器的映射查找。
这种算法解决了普通余数Hash算法伸缩性差的问题,可以保证在上线、下线服务器的情况下尽量有多的请求命中原来路由到的服务器。
当然,万事不可能十全十美,一致性Hash算法比普通的余数Hash算法更具有伸缩性,但是同时其算法实现也更为复杂,本文就来研究一下,如何利用Java代码实现一致性Hash算法。在开始之前,先对一致性Hash算法中的几个核心问题进行一些探究。
数据结构的选取
一致性Hash算法最先要考虑的一个问题是:构造出一个长度为232的整数环,根据节点名称的Hash值将服务器节点放置在这个Hash环上。
那么,整数环应该使用何种数据结构,才能使得运行时的时间复杂度最低?首先说明一点,关于时间复杂度,常见的时间复杂度与时间效率的关系有如下的经验规则:
O(1) < O(log2N) < O(n) < O(N * log2N) < O(N2) < O(N3) < 2N < 3N < N!
一般来说,前四个效率比较高,中间两个差强人意,后三个比较差(只要N比较大,这个算法就动不了了)。OK,继续前面的话题,应该如何选取数据结构,我认为有以下几种可行的解决方案。
1、解决方案一:排序+List
我想到的第一种思路是:算出所有待加入数据结构的节点名称的Hash值放入一个数组中,然后使用某种排序算法将其从小到大进行排序,最后将排序后的数据放入List中,采用List而不是数组是为了结点的扩展考虑。
之后,待路由的结点,只需要在List中找到第一个Hash值比它大的服务器节点就可以了,比如服务器节点的Hash值是[0,2,4,6,8,10],带路由的结点是7,只需要找到第一个比7大的整数,也就是8,就是我们最终需要路由过去的服务器节点。
如果暂时不考虑前面的排序,那么这种解决方案的时间复杂度:
(1)最好的情况是第一次就找到,时间复杂度为O(1)
(2)最坏的情况是最后一次才找到,时间复杂度为O(N)
平均下来时间复杂度为O(0.5N+0.5),忽略首项系数和常数,时间复杂度为O(N)。
但是如果考虑到之前的排序,我在网上找了张图,提供了各种排序算法的时间复杂度:
看得出来,排序算法要么稳定但是时间复杂度高、要么时间复杂度低但不稳定,看起来最好的归并排序法的时间复杂度仍然有O(N * logN),稍微耗费性能了一些。
2、解决方案二:遍历+List
既然排序操作比较耗性能,那么能不能不排序?可以的,所以进一步的,有了第二种解决方案。
解决方案使用List不变,不过可以采用遍历的方式:
(1)服务器节点不排序,其Hash值全部直接放入一个List中
(2)带路由的节点,算出其Hash值,由于指明了"顺时针",因此遍历List,比待路由的节点Hash值大的算出差值并记录,比待路由节点Hash值小的忽略
(3)算出所有的差值之后,最小的那个,就是最终需要路由过去的节点
在这个算法中,看一下时间复杂度:
1、最好情况是只有一个服务器节点的Hash值大于带路由结点的Hash值,其时间复杂度是O(N)+O(1)=O(N+1),忽略常数项,即O(N)
2、最坏情况是所有服务器节点的Hash值都大于带路由结点的Hash值,其时间复杂度是O(N)+O(N)=O(2N),忽略首项系数,即O(N)