经过前面的学习,基本上可以小试牛刀编写一些小程序玩一玩了,在此之前做几项准备工作
明确我要用Hadoop干什么
大体学习一下mapreduce
Ubuntu重启后,再启动hadoop会报连接异常的问题
答:
数据提炼、探索数据、挖掘数据
map=切碎,reduce=合并
重启后会清空tmp文件夹,默认namenode会存在这里,需要在core-site.xml文件中增加(别忘了创建文件夹,没权限的话,需要用root创建并把权限改成777):
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/local/hadoop/tmp</value>
</property>
大数据,我的第一反应是现有关系型数据库中的数据怎么跟hadoop结合使用,网上搜了一些资料,使用的是DBInputFormat,那就简单编写一个从数据库读取数据,然后经过处理后,生成文件的小例子吧
数据库弄的简单一点吧,id是数值整型、test是字符串型,需求很简单,统计TEST字段出现的数量
数据读取类:
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.lib.db.DBWritable;
public class DBRecoder implements Writable, DBWritable{
String test;
int id;
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(test);
out.writeInt(id);
}
@Override
public void readFields(DataInput in) throws IOException {
test = in.readUTF();
id = in.readInt();
}
@Override
public void readFields(ResultSet arg0) throws SQLException {
test = arg0.getString("test");
id = arg0.getInt("id");
}
@Override
public void write(PreparedStatement arg0) throws SQLException {
arg0.setString(1, test);
arg0.setInt(2, id);
}
}
mapreduce操作类
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.db.DBInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class DataCountTest {
public static class TokenizerMapper extends Mapper<LongWritable, DBRecoder, Text, IntWritable> {
public void map(LongWritable key, DBRecoder value, Context context) throws IOException, InterruptedException {
context.write(new Text(value.test), new IntWritable(1));
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
args = new String[1];
args[0] = "hdfs://192.168.203.137:9000/user/chenph/output1111221";
Configuration conf = new Configuration();
DBConfiguration.configureDB(conf, "Oracle.jdbc.driver.OracleDriver",
"jdbc:oracle:thin:@192.168.101.179:1521:orcl", "chenph", "chenph");
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
Job job = new Job(conf, "DB count");
job.setJarByClass(DataCountTest.class);
job.setMapperClass(TokenizerMapper.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
String[] fields1 = { "id", "test"};
DBInputFormat.setInput(job, DBRecoder.class, "t1", null, "id", fields1);
FileOutputFormat.setOutputPath(job, new Path(otherArgs[0]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
开发过程中遇到的问题:
Job被标记为已作废,那应该用什么我还没有查到
乱码问题,hadoop默认是utf8格式的,如果读取的是gbk的需要进行处理
这类例子网上挺少的,有也是老版的,新版的资料没有,我完全是拼凑出来的,很多地方还不甚了解,需要进一步学习官方资料
搜索资料时,有资料说不建议采用这种方式处理实际的大数据问题,原因就是并发过高,会瞬间秒杀掉数据库,一般都会采用导成文本文件的形式